PMID- 10102279 OWN - NLM STAT- MEDLINE DCOM- 19990402 LR - 20171116 IS - 0146-0404 (Print) IS - 0146-0404 (Linking) VI - 40 IP - 5 DP - 1999 Apr TI - Activation of NADPH oxidase by docosahexaenoic acid hydroperoxide and its inhibition by a novel retinal pigment epithelial protein. PG - 831-9 AB - PURPOSE: In an earlier study, a novel retinal pigment epithelial protective protein (RPP) was described, which suppresses the superoxide generation of activated polymorphonuclear leukocytes (PMNs). In experimental autoimmune uveitis, docosahexaenoic acid hydroperoxide (22:6OOH) has been shown to be the major lipid peroxidation product in photoreceptors. This hydroperoxide was also found to be chemotactic to PMNs. This study was undertaken to evaluate the activation capability of 22:6OOH in resting PMNs and the possible inhibition of this activation by RPP. METHODS: The 22:6OOH was obtained from pure 22:6 and was purified by thin-layer and high-performance liquid chromatography. Intact rabbit peritoneal PMNs (7-8 X 10(5)) were coincubated with 0.5 microM formyl-methionyl-leucyl-phenylalanine (fMLP), 1.3 microM 22:6OOH, or 5.0 microM 22:6. These systems were coincubated with and without 0.25 microg/ml RPP. From PMN cell-free preparations, the reconstitutes each containing 21 microg plasma membranes and 276 microg cytosolic factors were coincubated with arachidonate, 22:6OOH, or 22:6, each at 100 microM. The inhibition of superoxide production was estimated by adding 0.20 microg/ml RPP. Superoxide generation was measured by superoxide dismutase-inhibitable cytochrome C reduction. RESULTS: In 30 minutes, 22:6OOH-activated PMNs produced 11.10 +/- 0.68 nanomoles superoxide, and production was suppressed 72% by RPP. Under the same conditions, fMLP induced production of 34.6 +/- 2.77 nanomoles superoxide, and RPP inhibited 60% of production. In the PMN cell-free systems, 100 microM 22:6OOH induced 74.7 nanomoles superoxide per milligram plasma membrane proteins per 5 minutes, and RPP suppressed 50% of production. These results were comparable with those generated by arachidonate, a known stimulator for this system. RPP was effective only when it was added before assembly of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. CONCLUSIONS: The inflammation-mediated retinal peroxidation product 22:6OOH significantly activates resting PMNs, either in intact cells or in cell-free preparations, to increase further the release of superoxide from PMNs, thus accelerating inflammation-mediated tissue damage. This profound amplification process seems to be effectively downregulated by an RPE-generated protein RPP. FAU - Wu, G S AU - Wu GS AD - Doheny Eye Institute and the Department of Ophthalmology, University of Southern California, School of Medicine, Los Angeles 90033-1088, USA. FAU - Rao, N A AU - Rao NA LA - eng GR - EY03040/EY/NEI NIH HHS/United States GR - EY10212/EY/NEI NIH HHS/United States PT - Journal Article PT - Research Support, U.S. Gov't, P.H.S. PL - United States TA - Invest Ophthalmol Vis Sci JT - Investigative ophthalmology & visual science JID - 7703701 RN - 0 (Drug Combinations) RN - 0 (Eye Proteins) RN - 0 (Lipid Peroxides) RN - 11062-77-4 (Superoxides) RN - 25167-62-8 (Docosahexaenoic Acids) RN - 59880-97-6 (N-Formylmethionine Leucyl-Phenylalanine) RN - 83771-36-2 (docosahexaenoic acid hydroperoxide) RN - EC 1.6.3.- (NADPH Oxidases) SB - IM MH - Animals MH - Cell-Free System MH - Docosahexaenoic Acids/*pharmacology MH - Dose-Response Relationship, Drug MH - Drug Combinations MH - Enzyme Activation/drug effects MH - Eye Proteins/isolation & purification/*pharmacology MH - Lipid Peroxides/*pharmacology MH - N-Formylmethionine Leucyl-Phenylalanine/pharmacology MH - NADPH Oxidases/antagonists & inhibitors/*metabolism MH - Neutrophil Activation/*drug effects MH - Neutrophils/*drug effects/enzymology MH - Pigment Epithelium of Eye/*chemistry MH - Rabbits MH - Superoxides/metabolism EDAT- 1999/04/02 00:00 MHDA- 1999/04/02 00:01 CRDT- 1999/04/02 00:00 PHST- 1999/04/02 00:00 [pubmed] PHST- 1999/04/02 00:01 [medline] PHST- 1999/04/02 00:00 [entrez] PST - ppublish SO - Invest Ophthalmol Vis Sci. 1999 Apr;40(5):831-9.