PMID- 10102288 OWN - NLM STAT- MEDLINE DCOM- 19990402 LR - 20220318 IS - 0146-0404 (Print) IS - 0146-0404 (Linking) VI - 40 IP - 5 DP - 1999 Apr TI - Reactive oxygen species-induced apoptosis and necrosis in bovine corneal endothelial cells. PG - 911-9 AB - PURPOSE: The loss of corneal endothelial cells associated with aging and possibly other causes has been speculated to be related to exposure to reactive oxygen species (ROS). The current study was conducted to investigate, by use of photosensitizers, the underlying mechanisms involved in the death of bovine corneal endothelial cells (BCENs) caused by ROS. METHODS: BCEN cells in primary culture were treated with a photosensitizer (riboflavin or rose bengal) with light exposure. The patterns of cell damage and death were assessed using an acridine orange-ethidium bromide differential staining method, TdT-mediated dUTP nick-end labeling (TUNEL) assay, and transmission electron microscopy. The cytotoxicity was assayed by mitochondrial function using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) testing. Antioxidants, including catalase, L-histidine, salicylic acid, and superoxide dismutase, were used to determine the types of ROS involved. Activation of nuclear factor (NF)-kappaB was examined by fluorescent immunocytochemistry with anti-p65 antibody. RESULTS: Light-irradiated riboflavin or rose bengal resulted in a significant decrease in viability of BCEN cells. Chromosomal condensation and fragmentation were observed in apoptotic cells, and membrane lysis and damage of cell ultrastructures were observed in necrotic cells. Riboflavin induced apoptosis at 30 minutes and thereafter and induced necrosis after 2 hours. Rose bengal was shown to cause similar effects within half the time required for the effects of riboflavin. Catalase and salicylic acid were found to provide protection for BCENs from cytotoxic effects of riboflavin, and L-histidine was found to protect BCENs from cytotoxicity induced by rose bengal. Kinetic studies using immunocytochemistry showed that NF-kappaB was translocated into the nucleus within 15 minutes and 30 minutes after treatment with rose bengal and riboflavin, respectively. CONCLUSIONS: The cytotoxic effects of photo-irradiated riboflavin and rose bengal are shown to be mediated by two distinct but parallel pathways, one leading to apoptosis and the other to necrosis. Possible involvement of NF-kappaB in cell death is suggested. These findings provide potential leads for future investigation into the molecular mechanisms of loss of corneal endothelial cells related to aging, oxidative stress, and possibly other similar causes. FAU - Cho, K S AU - Cho KS AD - Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, and Catholic Research Institutes of Medical Science, Seoul. FAU - Lee, E H AU - Lee EH FAU - Choi, J S AU - Choi JS FAU - Joo, C K AU - Joo CK LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't PL - United States TA - Invest Ophthalmol Vis Sci JT - Investigative ophthalmology & visual science JID - 7703701 RN - 0 (Photosensitizing Agents) RN - 0 (Reactive Oxygen Species) RN - 0 (Tetrazolium Salts) RN - 0 (Thiazoles) RN - 1ZPG1ELY14 (Rose Bengal) RN - EN464416SI (Ethidium) RN - EUY85H477I (thiazolyl blue) RN - F30N4O6XVV (Acridine Orange) RN - TLM2976OFR (Riboflavin) SB - IM MH - Acridine Orange MH - Animals MH - *Apoptosis MH - Cattle MH - Cell Survival/drug effects MH - Cells, Cultured MH - Endothelium, Corneal/metabolism/*pathology MH - Ethidium MH - In Situ Nick-End Labeling MH - Mitochondria/drug effects MH - Necrosis MH - Photosensitizing Agents/pharmacology MH - *Reactive Oxygen Species MH - Riboflavin/pharmacology MH - Rose Bengal/pharmacology MH - Tetrazolium Salts MH - Thiazoles EDAT- 1999/04/02 00:00 MHDA- 1999/04/02 00:01 CRDT- 1999/04/02 00:00 PHST- 1999/04/02 00:00 [pubmed] PHST- 1999/04/02 00:01 [medline] PHST- 1999/04/02 00:00 [entrez] PST - ppublish SO - Invest Ophthalmol Vis Sci. 1999 Apr;40(5):911-9.