PMID- 10453054 OWN - NLM STAT- MEDLINE DCOM- 19991004 LR - 20191103 IS - 0022-3034 (Print) IS - 0022-3034 (Linking) VI - 40 IP - 4 DP - 1999 Sep 15 TI - Glial-neuronal interactions in the neuroendocrine control of mammalian puberty: facilitatory effects of gonadal steroids. PG - 528-40 AB - It is now clear that astroglial cells actively contribute to both the generation and flow of information within the central nervous system. In the hypothalamus, astrocytes regulate the secretory activity of neuroendocrine neurons. A small subset of these neurons secrete luteinizing hormone-releasing hormone (LHRH), a neuropeptide essential for sexual development and adult reproductive function. Astrocytes stimulate LHRH secretion via cell-cell signaling mechanisms involving growth factors recognized by receptors with either serine/threonine or tyrosine kinase activity. Two members of the epidermal growth factor (EGF) family and their respective tyrosine kinase receptors appear to play key roles in this regulatory process. Transforming growth factor-alpha (TGFalpha) and its distant congeners, the neuregulins (NRGs), are produced in hypothalamic astrocytes. They stimulate LHRH secretion indirectly, via activation of erbB-1/erbB-2 and erbB-4/erbB-2 receptor complexes also located on astrocytes. Activation of these receptors leads to release of prostaglandin E(2) (PGE(2)), which then binds to specific receptors on LHRH neurons to elicit LHRH secretion. Gonadal steroids facilitate this glia-to-neuron communication process by acting at three different steps along the signaling pathway. They (a) increase astrocytic gene expression of at least one of the EGF-related ligands (TGFalpha), (b) increase expression of at least two of the receptors (erbB-4 and erbB-2), and (c) enhance the LHRH response to PGE(2) by up-regulating in LHRH neurons the expression of specific PGE(2) receptor isoforms. Focal overexpression of TGFalpha in either the median eminence or preoptic area of the hypothalamus accelerates puberty. Conversely, blockade of either TGFalpha or NRG hypothalamic actions delays the process. Thus, both TGFalpha and NRGs appear to be physiological components of the central neuroendocrine mechanism controlling the initiation of female puberty. By facilitating growth factor signaling pathways in the hypothalamus, ovarian steroids accelerate the pace and progression of the pubertal process. CI - Copyright 1999 John Wiley & Sons, Inc. FAU - Ojeda, S R AU - Ojeda SR AD - Division of Neuroscience, Oregon Regional Primate Research Center/Oregon Health Sciences University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA. FAU - Ma, Y J AU - Ma YJ LA - eng GR - HD25123/HD/NICHD NIH HHS/United States GR - P30 HD18185/HD/NICHD NIH HHS/United States GR - RR00163/RR/NCRR NIH HHS/United States PT - Journal Article PT - Research Support, U.S. Gov't, P.H.S. PT - Review PL - United States TA - J Neurobiol JT - Journal of neurobiology JID - 0213640 RN - 0 (Gonadal Steroid Hormones) SB - IM MH - Animals MH - Cell Communication/physiology MH - Gonadal Steroid Hormones/*physiology MH - Humans MH - Neuroglia/*physiology MH - Neurons/*physiology MH - Neurosecretory Systems/*physiology MH - Puberty/*physiology MH - Sexual Maturation/*physiology RF - 95 EDAT- 1999/08/24 00:00 MHDA- 1999/08/24 00:01 CRDT- 1999/08/24 00:00 PHST- 1999/08/24 00:00 [pubmed] PHST- 1999/08/24 00:01 [medline] PHST- 1999/08/24 00:00 [entrez] AID - 10.1002/(SICI)1097-4695(19990915)40:4<528::AID-NEU9>3.0.CO;2-V [pii] AID - 10.1002/(sici)1097-4695(19990915)40:4<528::aid-neu9>3.0.co;2-v [doi] PST - ppublish SO - J Neurobiol. 1999 Sep 15;40(4):528-40. doi: 10.1002/(sici)1097-4695(19990915)40:4<528::aid-neu9>3.0.co;2-v.