PMID- 10531425 OWN - NLM STAT- MEDLINE DCOM- 19991119 LR - 20240421 IS - 1529-2401 (Electronic) IS - 0270-6474 (Print) IS - 0270-6474 (Linking) VI - 19 IP - 21 DP - 1999 Nov 1 TI - Knockdown of AMPA receptor GluR2 expression causes delayed neurodegeneration and increases damage by sublethal ischemia in hippocampal CA1 and CA3 neurons. PG - 9218-27 AB - Considerable evidence suggests that Ca(2+)-permeable AMPA receptors are critical mediators of the delayed, selective neuronal death associated with transient global ischemia and sustained seizures. Global ischemia suppresses mRNA and protein expression of the glutamate receptor subunit GluR2 and increases AMPA receptor-mediated Ca(2+) influx into vulnerable neurons of the hippocampal CA1 before the onset of neurodegeneration. Status epilepticus suppresses GluR2 mRNA and protein in CA3 before neurodegeneration in this region. To examine whether acute downregulation of the GluR2 subunit, even in the absence of a neurological insult, can cause neuronal cell death, we performed GluR2 "knockdown" experiments. Intracerebral injection of antisense oligodeoxynucleotides targeted to GluR2 mRNA induced delayed death of pyramidal neurons in CA1 and CA3. Antisense-induced neurodegeneration was preceded by a reduction in GluR2 mRNA, as indicated by in situ hybridization, and in GluR2 protein, as indicated by Western blot analysis. GluR2 antisense suppressed GluR2 mRNA in the dentate gyrus but did not cause cell death. The AMPA receptor antagonist 6-cyano-7-nitroquinoxiline-2,3-dione (CNQX) and the Ca(2+)-permeable AMPA receptor channel blocker 1-naphthyl acetyl spermine protected against antisense-induced cell death. This result indicates that antisense-induced cell death is mediated by Ca(2+)-permeable AMPA receptors. GluR2 antisense and brief sublethal global ischemia acted synergistically to cause degeneration of pyramidal neurons, consistent with action by a common mechanism. These findings demonstrate that downregulation of GluR2 is sufficient to induce delayed death of specific neuronal populations. FAU - Oguro, K AU - Oguro K AD - Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA. FAU - Oguro, N AU - Oguro N FAU - Kojima, T AU - Kojima T FAU - Grooms, S Y AU - Grooms SY FAU - Calderone, A AU - Calderone A FAU - Zheng, X AU - Zheng X FAU - Bennett, M V AU - Bennett MV FAU - Zukin, R S AU - Zukin RS LA - eng GR - NS 007412/NS/NINDS NIH HHS/United States GR - T32 NS007412/NS/NINDS NIH HHS/United States GR - NS 20752/NS/NINDS NIH HHS/United States GR - R01 NS020752/NS/NINDS NIH HHS/United States GR - NS 31282/NS/NINDS NIH HHS/United States PT - Journal Article PT - Research Support, U.S. Gov't, P.H.S. PL - United States TA - J Neurosci JT - The Journal of neuroscience : the official journal of the Society for Neuroscience JID - 8102140 RN - 0 (Oligodeoxyribonucleotides, Antisense) RN - 0 (RNA, Messenger) RN - 0 (Receptors, AMPA) RN - P6W5IXV8V9 (glutamate receptor ionotropic, AMPA 2) SB - IM MH - Animals MH - Brain/*pathology/physiopathology MH - Brain Ischemia/chemically induced/pathology/*physiopathology MH - Cell Survival/drug effects MH - Cerebral Ventricles/drug effects/physiology MH - Gene Expression Regulation/*drug effects MH - Hippocampus/pathology/physiopathology MH - Injections, Intraventricular MH - Male MH - Nerve Degeneration/chemically induced/pathology/*physiopathology MH - Neurons/pathology/physiology MH - Oligodeoxyribonucleotides, Antisense/*pharmacology MH - Protein Biosynthesis MH - RNA, Messenger/genetics MH - Rats MH - Rats, Sprague-Dawley MH - Receptors, AMPA/*genetics MH - Time Factors MH - Transcription, Genetic PMC - PMC6782923 EDAT- 1999/10/26 00:00 MHDA- 1999/10/26 00:01 PMCR- 2000/05/01 CRDT- 1999/10/26 00:00 PHST- 1999/10/26 00:00 [pubmed] PHST- 1999/10/26 00:01 [medline] PHST- 1999/10/26 00:00 [entrez] PHST- 2000/05/01 00:00 [pmc-release] AID - 3561 [pii] AID - 10.1523/JNEUROSCI.19-21-09218.1999 [doi] PST - ppublish SO - J Neurosci. 1999 Nov 1;19(21):9218-27. doi: 10.1523/JNEUROSCI.19-21-09218.1999.