PMID- 11379113 OWN - NLM STAT- MEDLINE DCOM- 20010719 LR - 20131121 IS - 0273-1223 (Print) IS - 0273-1223 (Linking) VI - 43 IP - 1 DP - 2001 TI - Population dynamics of anaerobic microbial consortia in thermophilic granular sludge in response to feed composition change. PG - 59-66 AB - A thermophilic UASB reactor was operated at 55 degrees C for greater than 470 days in order to investigate the effects of feed composition on the changes in microbial community structure where thermophilic granular sludge was used as the inoculum source. The feed compositions were changed with cultivation days; phase 1 (1-70 days), alcohol distillery wastewater; phase 2 (71-281 days), artificial acetate wastewater; phase 3 (282-474 days), artificial sucrose wastewater. During the first one month of each phase, the methanogenic activity and cell density of methanogens quantified by fluorescence in situ hybridization (FISH) drastically changed as a result of shift in feed composition. When artificial acetate wastewater was used as feed, retained granular sludge was partially disintegrated due to a decrease in the number of symbiotic bacterial community members: acetogens (acidogens) and hydrogenotrophic methanogens. In contrast, when the feed was shifted to sucrose (phase 3), granulation of biomass was promoted by a remarkable proliferation of the symbiotic community. The presence of hydrogen-utilizing methanogens and acetogens (acidogens) are shown to be effective for the enhancement of thermophilic granulation. The cell density of methanogens determined by FISH was strongly correlated with the methane-producing potential of the retained thermophilic granular sludge. FAU - Syutsubo, K AU - Syutsubo K AD - Kamaishi Laboratories, Marine Biotechnology Institute Co., Ltd., Heita, Kamaishi, Iwate 026-0001, Japan. FAU - Sinthurat, N AU - Sinthurat N FAU - Ohashi, A AU - Ohashi A FAU - Harada, H AU - Harada H LA - eng PT - Journal Article PL - England TA - Water Sci Technol JT - Water science and technology : a journal of the International Association on Water Pollution Research JID - 9879497 RN - 0 (Acetates) RN - 0 (Sewage) RN - 3K9958V90M (Ethanol) RN - 57-50-1 (Sucrose) SB - IM MH - Acetates/metabolism MH - *Bacteria, Anaerobic MH - Biomass MH - Ethanol/metabolism MH - Euryarchaeota MH - In Situ Hybridization, Fluorescence MH - Population Dynamics MH - *Refuse Disposal MH - Sewage/*microbiology MH - Sucrose/metabolism MH - Temperature EDAT- 2001/05/31 10:00 MHDA- 2001/07/20 10:01 CRDT- 2001/05/31 10:00 PHST- 2001/05/31 10:00 [pubmed] PHST- 2001/07/20 10:01 [medline] PHST- 2001/05/31 10:00 [entrez] PST - ppublish SO - Water Sci Technol. 2001;43(1):59-66.