PMID- 11426601 OWN - NLM STAT- MEDLINE DCOM- 20010719 LR - 20190910 IS - 0021-9304 (Print) IS - 0021-9304 (Linking) VI - 54 IP - 4 DP - 2001 Mar 15 TI - Nanoindentation study of interfaces between calcium phosphate and bone in an animal spinal fusion model. PG - 554-9 AB - Intertransverse process spinal fusion is a common surgical procedure for the treatment of spinal disorders. In the present study, a porous hydroxyapatite (HA)/beta-tricalcium phosphate (beta-TCP) ceramic was tested as graft material using a rabbit lumbar transverse process (L5-L6) fusion model. The porous ceramic blocks were implanted onto the dorsal decorticated surface of the lumbar transverse processes. The specimens were harvested at the seventh week after implantation. Histomorphological observation revealed that the integration of HA/beta-TCP with the host bone of the transverse process occurred by both cancellous bone formation and cartilage formation. Scanning electron microscopy-wavelength dispersive X-ray spectrometry examinations showed significant differences in calcium, phosphorus, and sulfur contents in the newly formed tissues and the porous HA/TCP implants. Nanoindentations were used to evaluate the intrinsic mechanical properties of the implants and the newly formed tissues. The Young's moduli of the newly formed cartilage, new cancellous bone, and HA/TCP, were 0.66 +/- 0.02 GPa, 2.36 +/- 0.50 GPa, and 10.2 +/- 1.21 GPa, respectively. Nanoindentation results revealed degradation of the porous ceramics and incomplete calcification of the new cancellous bone at the seventh week after implantation. Nanoindentation appeared to be a useful technique for assessing the mechanical status of spinal fusion in animal models. FAU - Guo, L AU - Guo L AD - Engineering Research Center for Biomaterials, Sichuan University, Chengdu, People's Republic of China. nic7500@scu.edu.cn FAU - Guo, X AU - Guo X FAU - Leng, Y AU - Leng Y FAU - Cheng, J C AU - Cheng JC FAU - Zhang, X AU - Zhang X LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't PL - United States TA - J Biomed Mater Res JT - Journal of biomedical materials research JID - 0112726 RN - 0 (Bone Substitutes) RN - 0 (Calcium Phosphates) RN - 0 (beta-tricalcium phosphate) RN - 91D9GV0Z28 (Durapatite) RN - K4C08XP666 (tricalcium phosphate) SB - IM MH - Animals MH - *Bone Substitutes MH - Calcium Phosphates/*chemistry/*metabolism MH - Cartilage, Articular/cytology/physiology MH - Durapatite/*chemistry MH - Lumbar Vertebrae/cytology/*physiology MH - Microscopy, Electron, Scanning MH - Models, Animal MH - Rabbits MH - Spectrometry, X-Ray Emission MH - *Spinal Fusion EDAT- 2001/06/28 10:00 MHDA- 2001/07/20 10:01 CRDT- 2001/06/28 10:00 PHST- 2001/06/28 10:00 [pubmed] PHST- 2001/07/20 10:01 [medline] PHST- 2001/06/28 10:00 [entrez] AID - 10.1002/1097-4636(20010315)54:4<554::aid-jbm120>3.0.co;2-9 [doi] PST - ppublish SO - J Biomed Mater Res. 2001 Mar 15;54(4):554-9. doi: 10.1002/1097-4636(20010315)54:4<554::aid-jbm120>3.0.co;2-9.