PMID- 12203776 OWN - NLM STAT- MEDLINE DCOM- 20021004 LR - 20071115 IS - 1045-2257 (Print) IS - 1045-2257 (Linking) VI - 35 IP - 2 DP - 2002 Oct TI - Multicolor COBRA-FISH analysis of chronic myeloid leukemia reveals novel cryptic balanced translocations during disease progression. PG - 127-37 AB - During the initial indolent chronic phase of chronic myeloid leukemia (CML), the t(9;22)(q34;q11), resulting in the Philadelphia chromosome (Ph), is usually the sole cytogenetic anomaly, but as the disease progresses into the accelerated phase (AP), and eventually into aggressive blast crisis (BC), secondary aberrations, mainly unbalanced changes such as +8, i(17q), and +Ph, are frequent. To date, molecular genetic studies of CML BC have mainly focused on alterations of well-known tumor-suppressor genes (e.g., TP53, CDKN2A, and RB1) and oncogenes (e.g., RAS and MYC), whereas limited knowledge is available about the molecular genetic correlates of the unbalanced chromosomal abnormalities. Balanced secondary changes are rare in CML AP/BC, but it is not known whether cryptic chromosomal translocations, generating fusion genes, may be responsible for disease progression in a subgroup of CML. To address this issue, we used multicolor combined binary ratio fluorescence in situ hybridization (FISH), which allows the simultaneous visualization of all 24 chromosomes in different colors, verified by locus-specific FISH in a series of 33 CML cases. Two cryptic balanced translocations, t(7;17)(q32-34;q23) and t(7;17)(p15;q23), were found in two of the five cases showing the t(9;22) as the only cytogenetic change. Using several BAC clones, the breakpoints at 17q23 in both cases were mapped within a 350-kb region. In the case with the 7p15 breakpoint, a BAC clone containing the HOXA gene cluster displayed a split signal, suggesting a possible creation of a fusion gene involving a member of the HOXA family. Furthermore, one case with a partially cryptic t(9;11)(p21-22;q23) and an MLL rearrangement as well as a previously unreported t(3;10)(p22;p12-13) were identified. Altogether, a refined karyotypic description was achieved in 12 (36%) of the 33 investigated cases, illustrating the value of using multicolor FISH for identifying pathogenetically important aberrations in CML AP/BC. CI - Copyright 2002 Wiley-Liss, Inc. FAU - Barbouti, Aikaterini AU - Barbouti A AD - Department of Clinical Genetics, Lund University Hospital, Lund, Sweden. Aikaterini.Barmpouti@klingen.lu.se FAU - Johansson, Bertil AU - Johansson B FAU - Hoglund, Mattias AU - Hoglund M FAU - Mauritzson, Nils AU - Mauritzson N FAU - Strombeck, Bodil AU - Strombeck B FAU - Nilsson, Per-Gunnar AU - Nilsson PG FAU - Tanke, Hans J AU - Tanke HJ FAU - Hagemeijer, Anne AU - Hagemeijer A FAU - Mitelman, Felix AU - Mitelman F FAU - Fioretos, Thoas AU - Fioretos T LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't PL - United States TA - Genes Chromosomes Cancer JT - Genes, chromosomes & cancer JID - 9007329 SB - IM MH - Adolescent MH - Adult MH - Aged MH - Aged, 80 and over MH - Chromosome Aberrations MH - Chromosome Banding MH - Chromosome Painting MH - Disease Progression MH - Female MH - Humans MH - In Situ Hybridization, Fluorescence/*methods MH - Karyotyping MH - Leukemia, Myelogenous, Chronic, BCR-ABL Positive/*genetics/pathology MH - Male MH - Middle Aged MH - Translocation, Genetic/*genetics EDAT- 2002/08/31 10:00 MHDA- 2002/10/09 04:00 CRDT- 2002/08/31 10:00 PHST- 2002/08/31 10:00 [pubmed] PHST- 2002/10/09 04:00 [medline] PHST- 2002/08/31 10:00 [entrez] AID - 10.1002/gcc.10099 [doi] PST - ppublish SO - Genes Chromosomes Cancer. 2002 Oct;35(2):127-37. doi: 10.1002/gcc.10099.