PMID- 12216618 OWN - NLM STAT- MEDLINE DCOM- 20030129 LR - 20131121 IS - 0273-1223 (Print) IS - 0273-1223 (Linking) VI - 46 IP - 1-2 DP - 2002 TI - Population dynamics in wastewater treatment plants with enhanced biological phosphorus removal operated with and without nitrogen removal. PG - 163-70 AB - The population dynamics of activated sludge in a pilot plant with two activated sludge systems, both designed for enhanced biological phosphorus removal (EBPR), but one of them with (BNP) and the other without (BP) nitrogen removal, was monitored during a period of 2.5 years. The influent water to the pilot plant was periodically manipulated by external addition of phosphorus (P), acetate and glucose, respectively. The population dynamics and the in situ physiology were monitored by quantitative fluorescence in situ hybridization (FISH) and microautoradiography. Significant P removal was observed in both systems throughout the whole period, with significant increases of the P removal when substrates were dosed. The activated sludge in both systems contained large amounts of dense clusters of gram-negative, methylene-blue staining coccoid rods during the whole period. A large part of the clusters belonged to the beta Proteobacteria, whereas the rest of the clusters belonged either to the Actinobacteria or to the alpha Proteobacteria. The relative abundance of Rhodocyclus-related bacteria in the activated sludge varied significantly in both systems during the whole period (from 6 to 18% in BNP, and from 4 to 28% in BP). However, no statistically significant correlation of the Rhodocyclus-related nor any of the other investigated bacterial groups to the P content of the activated sludge (correlation for all groups investigated was always < 0.5) was observed. A significant 33Pi uptake was observed by the beta Proteobacteria (part of them Rhodocyclus-related, the identity of the rest unknown) and the Actinobacteria. However, not all of the Rhodocyclus-related bacteria showed 33Pi uptake. The P removal in the investigated plants is thus believed to be mediated by a mixed population consisting of a part of the Rhodocyclus-related bacteria, the Actinobacteria and other, yet unidentified bacteria. FAU - Lee, N AU - Lee N AD - Lehrstuhl fur Mikrobiologie, TU Munchen, Freising, Germany. www.microbial-ecology.de FAU - Jansen, J la Cour AU - Jansen Jl FAU - Aspegren, H AU - Aspegren H FAU - Henze, M AU - Henze M FAU - Nielsen, P H AU - Nielsen PH FAU - Wagner, M AU - Wagner M LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't PL - England TA - Water Sci Technol JT - Water science and technology : a journal of the International Association on Water Pollution Research JID - 9879497 RN - 27YLU75U4W (Phosphorus) RN - N762921K75 (Nitrogen) SB - IM MH - Autoradiography MH - *Bioreactors MH - Gram-Negative Bacteria MH - In Situ Hybridization, Fluorescence MH - Nitrogen/metabolism MH - Phosphorus/*metabolism MH - Population Dynamics MH - *Waste Disposal, Fluid EDAT- 2002/09/10 10:00 MHDA- 2003/01/30 04:00 CRDT- 2002/09/10 10:00 PHST- 2002/09/10 10:00 [pubmed] PHST- 2003/01/30 04:00 [medline] PHST- 2002/09/10 10:00 [entrez] PST - ppublish SO - Water Sci Technol. 2002;46(1-2):163-70.