PMID- 12693669 OWN - NLM STAT- MEDLINE DCOM- 20031212 LR - 20190607 IS - 0963-6897 (Print) IS - 0963-6897 (Linking) VI - 12 IP - 1 DP - 2003 TI - Tumor necrosis factor-alpha (TNF-alpha) stimulates chemotactic response in mouse myogenic cells. PG - 91-100 AB - Migration of transplanted myogenic cells occurs during both embryogenesis and regeneration of skeletal muscles and is important for successful myoblast transplantation, but little is known about factors that promote chemotaxis of these cells. Tumor necrosis factor-alpha (TNF-alpha) is known to induce chemotactic effect on several cell types. In this study, we investigated its influence on the in vitro and in vivo motility of C2C12 and primary myoblasts. In the in vitro test performed in the blind-well Boyden chambers, we showed that TNF-alpha (50-400 U/ml) significantly enhanced the ability of myogenic cells to migrate. The dose-response curve for this factor was bell shaped, with maximum activity in the 200 U/ml range. In the in vivo test, intramuscular administration of TNF-alpha was performed by an Alzet pump connected to a perforated polyethylene microtube inserted in the tibialis anterior (TA) of CD1 mice. In these experiments, myoblasts were injected under the muscle epimysium. The recipient mice were immunosuppressed with FK506. Our results showed that, 5 days after myoblast transplantation, cells migrated further in the muscles infused with TNF-alpha than in the muscles not exposed to TNF-alpha. TNF-alpha not only has a chemotactic activity but may also modify cell migration via its action on matrix metalloproteinase (MMP) expression. The proteolytic activities of the MMPs secreted in the muscles were thus also assessed by gelatin zymography. The results showed an increased of MMP-2 and MMP-9 transcripts in the TNF-alpha-infused muscles injected with myogenic cells. Myoblast migration during transplantation may be enhanced by overlapping gradients of several effector molecules such as TNF-alpha, interferon-gamma (INF-gamma), and interleukins, released at the site of muscle injury. We propose that TNF-alpha may promote myoblast migration directly through chemotactic activity and indirectly by enhancing MMP activity at the site of muscle injury. FAU - Torrente, Y AU - Torrente Y AD - Centro Dino Ferrari, Institute of Clinical Neurology, University of Milan, Milan, Italy. FAU - El Fahime, E AU - El Fahime E FAU - Caron, N J AU - Caron NJ FAU - Del Bo, R AU - Del Bo R FAU - Belicchi, M AU - Belicchi M FAU - Pisati, F AU - Pisati F FAU - Tremblay, J P AU - Tremblay JP FAU - Bresolin, N AU - Bresolin N LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't PL - United States TA - Cell Transplant JT - Cell transplantation JID - 9208854 RN - 0 (Cytokines) RN - 0 (Immunosuppressive Agents) RN - 0 (Lymphocyte Function-Associated Antigen-1) RN - 0 (Macrophage-1 Antigen) RN - 0 (Tumor Necrosis Factor-alpha) RN - EC 3.4.24.- (Matrix Metalloproteinases) SB - IM MH - Animals MH - Cell Differentiation/drug effects/*physiology MH - Cells, Cultured MH - Chemotaxis/drug effects/*physiology MH - Cytokines/immunology/metabolism MH - Dose-Response Relationship, Drug MH - Immunosuppressive Agents/pharmacology MH - Lymphocyte Function-Associated Antigen-1/drug effects/metabolism MH - Macrophage-1 Antigen/drug effects/metabolism MH - Matrix Metalloproteinases/drug effects/metabolism MH - Mice MH - Mice, Transgenic MH - Muscle, Skeletal/drug effects/injuries/*metabolism MH - Muscular Diseases/*therapy MH - Myoblasts/drug effects/metabolism/*transplantation MH - Tissue Transplantation/*methods MH - Treatment Outcome MH - Tumor Necrosis Factor-alpha/*metabolism/pharmacology EDAT- 2003/04/16 05:00 MHDA- 2003/12/13 05:00 CRDT- 2003/04/16 05:00 PHST- 2003/04/16 05:00 [pubmed] PHST- 2003/12/13 05:00 [medline] PHST- 2003/04/16 05:00 [entrez] AID - 10.3727/000000003783985115 [doi] PST - ppublish SO - Cell Transplant. 2003;12(1):91-100. doi: 10.3727/000000003783985115.