PMID- 12906060 OWN - NLM STAT- MEDLINE DCOM- 20030926 LR - 20171116 IS - 0022-0302 (Print) IS - 0022-0302 (Linking) VI - 86 IP - 7 DP - 2003 Jul TI - Effect of dietary carbohydrate composition and availability on utilization of ruminal ammonia nitrogen for milk protein synthesis in dairy cows. PG - 2416-27 AB - A trial with four ruminally and duodenally cannulated, late-lactation dairy cows was conducted to investigate the effect of dietary carbohydrate (CHO) composition and availability on ruminal ammonia N utilization and transfer into milk protein. Two diets were fed at 8-h intervals in a crossover design. The diets differed in CHO composition: the ruminally fermentable non-structural carbohydrates (RFSS) diet (barley and molasses) contained a larger proportion of ruminally available CHO in the nonstructural carbohydrate fractions and the ruminally fermentable fiber (RFNDF) diet (corn, beet pulp, and brewer's grains) contained a larger proportion of CHO in ruminally available fiber. Nitrogen-15 was used to label ruminal ammonia N and consequently microbial and milk N. Fermentation acids, enzyme activities, and microbial protein production in the rumen were not affected by diet. Ruminal ammonia concentration was lowered by RFNDF. Ruminal and total tract digestibility of nutrients did not differ between diets except that apparent ruminal degradability of crude protein was lower for RFNDF compared with RFSS. Partitioning of N losses between urine and feces was also not affected by diet. Milk yield and fat and protein content were not affected by treatment. Average concentration of milk urea N was lower for RFNDF than for RFSS. Proportion of milk protein N originating from ruminal microbial N (based on the areas under the 15N-enrichment curves) was higher for RFNDF than for RFSS. Cumulative recovery of 15N in milk protein was 13% higher for RFNDF than for RFSS indicating enhanced transfer of 15N-ammonia into milk protein with the former diet. The results suggested that, compared to diets containing higher levels of ruminally fermentable starch, diets providing higher concentration of ruminally fermentable fiber may enhance transfer of ruminal ammonia and microbial N into milk protein. FAU - Hristov, A N AU - Hristov AN AD - Department of Animal and Veterinary Science, University of Idaho, Moscow, ID 83844-2330, USA. ahristov@uidaho.edu FAU - Ropp, J K AU - Ropp JK LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't PL - United States TA - J Dairy Sci JT - Journal of dairy science JID - 2985126R RN - 0 (Dietary Carbohydrates) RN - 0 (Dietary Fiber) RN - 0 (Milk Proteins) RN - 0 (Nitrogen Isotopes) RN - 7664-41-7 (Ammonia) RN - 9005-25-8 (Starch) RN - N762921K75 (Nitrogen) SB - IM MH - Ammonia/*chemistry MH - Animal Feed MH - Animals MH - Bacteria/metabolism MH - Beta vulgaris MH - Cattle/*metabolism MH - Dietary Carbohydrates/*administration & dosage/analysis MH - Dietary Fiber/administration & dosage/analysis/metabolism MH - Digestion MH - Female MH - Fermentation MH - Hordeum MH - Hydrogen-Ion Concentration MH - Lactation MH - Milk/chemistry MH - Milk Proteins/*biosynthesis MH - Molasses MH - Nitrogen/*metabolism MH - Nitrogen Isotopes/administration & dosage MH - Rumen/chemistry/*metabolism/microbiology MH - Starch/administration & dosage MH - Zea mays EDAT- 2003/08/09 05:00 MHDA- 2003/09/27 05:00 CRDT- 2003/08/09 05:00 PHST- 2003/08/09 05:00 [pubmed] PHST- 2003/09/27 05:00 [medline] PHST- 2003/08/09 05:00 [entrez] AID - S0022-0302(03)73836-3 [pii] AID - 10.3168/jds.S0022-0302(03)73836-3 [doi] PST - ppublish SO - J Dairy Sci. 2003 Jul;86(7):2416-27. doi: 10.3168/jds.S0022-0302(03)73836-3.