PMID- 13678793 OWN - NLM STAT- MEDLINE DCOM- 20040430 LR - 20191107 IS - 0928-0987 (Print) IS - 0928-0987 (Linking) VI - 20 IP - 1 DP - 2003 Sep TI - Study of the biodegradation and in vivo biocompatibility of novel biomaterials. PG - 53-61 AB - The degradation of two rosin-based biomaterials, the glycerol ester of maleic rosin (GMR) and the pentaerythritol ester of maleic rosin (PMR), was examined in vitro in phosphate-buffered saline at pH 7.4 and in vivo in a subcutaneous rat model. Free films of the two biomaterials with mean thickness 0.4+/-0.02 mm were used for the study. The initial biocompatibility was followed by microscopic examination of the inflammatory tissue response to the implanted films. Sample weight loss and molecular weight decline of the free films was used to monitor the degradation quantitatively, while surface morphological changes were analysed for qualitative estimation. Biocompatibility response was followed on post-operative days 7, 14, 21 and 28 and compared with those of poly(DL-lactic-co-glycolic acid) (PLGA) (50:50) films. Both biomaterials showed slow in vitro degradation when compared with the in vivo rate. The mechanism followed was, however, bulk degradation of the films. The penta-esterified form of maleic rosin was observed to degrade more rapidly than glycerol esterified maleic rosin. The acute and subacute inflammatory reactions were characterized by fibrosis at the end of 28 days. The biomaterials showed reasonable tissue tolerance to the extent evaluated. There was a total absence of tissue necrosis or abscess formation for all implanted films. The response, although not identical to that of PLGA, is reasonable, promising new drug delivery applications for rosin biomaterials. FAU - Fulzele, S V AU - Fulzele SV AD - Department of Pharmaceutical Sciences, Nagpur University Campus, Amravati Road, 440010, Nagpur, India. fsuniket@yahoo.com FAU - Satturwar, P M AU - Satturwar PM FAU - Dorle, A K AU - Dorle AK LA - eng PT - Comparative Study PT - Journal Article PL - Netherlands TA - Eur J Pharm Sci JT - European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences JID - 9317982 RN - 0 (Biocompatible Materials) RN - 0 (Drug Implants) RN - 0 (Esters) RN - 0 (Polymers) RN - 0 (Resins, Plant) RN - 1SIA8062RS (Polylactic Acid-Polyglycolic Acid Copolymer) RN - 26009-03-0 (Polyglycolic Acid) RN - 33X04XA5AT (Lactic Acid) RN - 88S87KL877 (rosin) SB - IM MH - Animals MH - Biocompatible Materials/chemistry/*metabolism MH - Biodegradation, Environmental MH - Chromatography, Gel MH - Drug Implants/metabolism MH - Drug Stability MH - Esters MH - In Vitro Techniques MH - Lactic Acid/chemistry MH - Male MH - Microscopy, Electron, Scanning MH - Molecular Weight MH - Polyglycolic Acid/chemistry MH - Polylactic Acid-Polyglycolic Acid Copolymer MH - Polymers/chemistry MH - Rats MH - Rats, Wistar MH - Resins, Plant/chemistry/*metabolism EDAT- 2003/09/19 05:00 MHDA- 2004/05/01 05:00 CRDT- 2003/09/19 05:00 PHST- 2003/09/19 05:00 [pubmed] PHST- 2004/05/01 05:00 [medline] PHST- 2003/09/19 05:00 [entrez] AID - S0928098703001684 [pii] AID - 10.1016/s0928-0987(03)00168-4 [doi] PST - ppublish SO - Eur J Pharm Sci. 2003 Sep;20(1):53-61. doi: 10.1016/s0928-0987(03)00168-4.