PMID- 14729621 OWN - NLM STAT- MEDLINE DCOM- 20040401 LR - 20191108 IS - 0008-5472 (Print) IS - 0008-5472 (Linking) VI - 64 IP - 1 DP - 2004 Jan 1 TI - Angiogenic acceleration of Neu induced mammary tumor progression and metastasis. PG - 169-79 AB - The Neu (ErbB2, HER2) member of the epidermal growth factor receptor family is implicated in many human breast cancers. We have tested the importance of increased angiogenic signaling in the NeuYD [mouse mammary tumor virus (MMTV)-Neu(ndl)-YD5] mammary tumor model. Transgenic mice expressing vascular endothelial growth factor (VEGF)(164) from the MMTV promoter were generated. These mice expressed VEGF(164) RNA and protein at 20- to 40-fold higher levels throughout mammary gland development but exhibited normal mammary gland development and function. However, in combination with the NeuYD oncogene, VEGF(164) expression resulted in increased vascularization of hyperplastic mammary epithelium and dramatic acceleration of tumor appearance from 111 to 51 days. Gene expression profiling also indicated that the VEGF-accelerated tumors were substantially more vascularized and less hypoxic. The preferential vascularization of early hyperplastic portions of mammary epithelia in NeuYD;MMTV-VEGF animals was associated with NeuYD RNA expression, disorganization of the tight junctions, and overlapping transgenic VEGF expression. NeuYD;MMTV-VEGF(164) bigenic, tumor-bearing animals resulted in an average of 10 tumor cell colonies/lung lodged within vascular spaces. No similar lung colonies were found in control NeuYD mice with similar tumor burdens. Overall, these results demonstrate the angiogenic restriction of early hyperplastic mammary lesions. They also reinforce in vivo the importance of activated Neu in causing disorganization of mammary luminal epithelial cell junctions and provide support for an invasion-independent mechanism of metastasis. FAU - Oshima, Robert G AU - Oshima RG AD - Oncodevelopmental Biology Program, The Burnham Institute, La Jolla, California 92037, USA. rgoshima@burnham.org FAU - Lesperance, Jacqueline AU - Lesperance J FAU - Munoz, Varinia AU - Munoz V FAU - Hebbard, Lionel AU - Hebbard L FAU - Ranscht, Barbara AU - Ranscht B FAU - Sharan, Niki AU - Sharan N FAU - Muller, William J AU - Muller WJ FAU - Hauser, Craig A AU - Hauser CA FAU - Cardiff, Robert D AU - Cardiff RD LA - eng GR - CA 30199/CA/NCI NIH HHS/United States GR - CA 74597/CA/NCI NIH HHS/United States GR - HD 25938/HD/NICHD NIH HHS/United States PT - Journal Article PT - Research Support, Non-U.S. Gov't PT - Research Support, U.S. Gov't, Non-P.H.S. PT - Research Support, U.S. Gov't, P.H.S. PL - United States TA - Cancer Res JT - Cancer research JID - 2984705R RN - 0 (DNA Primers) RN - 0 (Vascular Endothelial Growth Factor A) RN - EC 2.7.10.1 (Receptor, ErbB-2) SB - IM MH - Animals MH - Base Sequence MH - DNA Primers MH - Disease Progression MH - Mammary Neoplasms, Experimental/*blood supply/*pathology MH - Mammary Tumor Virus, Mouse MH - Mice MH - Mice, Transgenic MH - Neoplasm Metastasis MH - Neovascularization, Pathologic/*pathology MH - Polymerase Chain Reaction MH - Receptor, ErbB-2/*physiology MH - Vascular Endothelial Growth Factor A/genetics EDAT- 2004/01/20 05:00 MHDA- 2004/04/02 05:00 CRDT- 2004/01/20 05:00 PHST- 2004/01/20 05:00 [pubmed] PHST- 2004/04/02 05:00 [medline] PHST- 2004/01/20 05:00 [entrez] AID - 10.1158/0008-5472.can-03-1944 [doi] PST - ppublish SO - Cancer Res. 2004 Jan 1;64(1):169-79. doi: 10.1158/0008-5472.can-03-1944.