PMID- 15115607 OWN - NLM STAT- MEDLINE DCOM- 20040713 LR - 20061115 IS - 0897-7151 (Print) IS - 0897-7151 (Linking) VI - 21 IP - 3 DP - 2004 Mar TI - Adenovirus vector-mediated in vivo gene transfer of brain-derived neurotrophic factor (BDNF) promotes rubrospinal axonal regeneration and functional recovery after complete transection of the adult rat spinal cord. PG - 329-37 AB - Neurotrophins have been shown to promote axonal regeneration, but the techniques available for delivering neurotrophins have limited effectiveness. The aim of this study was to evaluate the effect of adenovirus vector mediated gene transfer of brain-derived neurotrophic factor (BDNF) on axonal regeneration after spinal cord injury. We prepared adenovirus vectors encoding either beta-galactosidase (AxCALacZ) or BDNF (AxCABDNF). AxCALacZ was used to assess infection levels of the adenovirus BDNF produced by AxCABDNF was detected by Western blotting and its bioactivity was confirmed by bioassay. As a model of spinal cord injury, the rat spinal cord was completely transected at the T8 level. Immediately after transection, the vectors were injected into both stumps of the spinal cord. Axonal regeneration after transection was assessed by retrograde and anterograde tracing. In AxCALacZ-injected rats, adenovirus-infected cells were observed not only at the injected site but also in brainstem nuclei, as shown by LacZ expression. After the injection of the retrograde tracer fluorogold (FG) distal portion to the transection, AxCABDNF-injected rats showed FG-labeled neurons in the red nucleus. The anterograde tracer biotinylated dextran amine (BDA) injected into the red nucleus was also found in regenerating rubrospinal fibers distal to the transection. These tracing experiments demonstrated the regeneration of descending axons. In addition, rats of the AxCABDNF group showed significant locomotor recovery of hindlimb function, which was completely abolished by re-transection. These results indicate that the recovery was caused by regeneration of rubrospinal axons, not by simple enhancement of the central pattern generator. FAU - Koda, Masao AU - Koda M AD - Division of Rehabilitation Medicine, Chiba University Graduate School of Medicine, Chiba, Japan. m-koda@nifty.com FAU - Hashimoto, Masayuki AU - Hashimoto M FAU - Murakami, Masazumi AU - Murakami M FAU - Yoshinaga, Katsunori AU - Yoshinaga K FAU - Ikeda, Osamu AU - Ikeda O FAU - Yamazaki, Masashi AU - Yamazaki M FAU - Koshizuka, Shuhei AU - Koshizuka S FAU - Kamada, Takahito AU - Kamada T FAU - Moriya, Hideshige AU - Moriya H FAU - Shirasawa, Hiroshi AU - Shirasawa H FAU - Sakao, Seiichiro AU - Sakao S FAU - Ino, Hidetoshi AU - Ino H LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't PL - United States TA - J Neurotrauma JT - Journal of neurotrauma JID - 8811626 RN - 0 (Brain-Derived Neurotrophic Factor) SB - IM MH - Adenoviridae MH - Animals MH - Axons/*physiology MH - Brain-Derived Neurotrophic Factor/*physiology MH - *Gene Transfer Techniques MH - Genetic Vectors/therapeutic use MH - Lac Operon/physiology MH - Male MH - Nerve Regeneration/*physiology MH - Rats MH - Rats, Wistar MH - Recovery of Function/physiology MH - Spinal Cord Injuries/physiopathology/*therapy EDAT- 2004/04/30 05:00 MHDA- 2004/07/14 05:00 CRDT- 2004/04/30 05:00 PHST- 2004/04/30 05:00 [pubmed] PHST- 2004/07/14 05:00 [medline] PHST- 2004/04/30 05:00 [entrez] AID - 10.1089/089771504322972112 [doi] PST - ppublish SO - J Neurotrauma. 2004 Mar;21(3):329-37. doi: 10.1089/089771504322972112.