PMID- 15454105 OWN - NLM STAT- MEDLINE DCOM- 20050202 LR - 20071114 IS - 8756-3282 (Print) IS - 1873-2763 (Linking) VI - 35 IP - 4 DP - 2004 Oct TI - Sexual dimorphism of the femoral neck during the adolescent growth spurt: a structural analysis. PG - 973-81 AB - Before puberty, there are only small sex differences in body shape and composition. During adolescence, sexual dimorphism in bone, lean, and fat mass increases, giving rise to the greater size and strength of the male skeleton. The question remains as to whether there are sex differences in bone strength or simply differences in anthropometric dimensions. To test this, we applied hip structural analysis (HSA) to derive strength and geometric indices of the femoral neck using bone densitometry scans (DXA) from a 6-year longitudinal study in Canadian children. Seventy boys and sixty-eight girls were assessed annually for 6 consecutive years. At the femoral neck, cross-sectional area (CSA, an index of axial strength), subperiosteal width (SPW), and section modulus (Z, an index of bending strength) were determined, and data were analyzed using a hierarchical (random effects) modeling approach. Biological age (BA) was defined as years from age at peak height velocity (PHV). When BA, stature, and total-body lean mass (TB lean) were controlled, boys had significantly higher Z than girls at all maturity levels (P < 0.05). Controlling height and TB lean for CSA demonstrated a significant independent sex by BA interaction effect (P < 0.05). That is, CSA was greater in boys before PHV but higher in girls after PHV. The coefficients contributing the greatest proportion to the prediction of CSA, SPW, and Z were height and lean mass. Because the significant sex difference in Z was relatively small and close to the error of measurement, we questioned its biological significance. The sex difference in bending strength was therefore explained by anthropometric differences. In contrast to recent hypotheses, we conclude that the CSA-lean ratio does not imply altered mechanosensitivity in girls because bending dominates loading at the neck, and the Z -lean ratio remained similar between the sexes throughout adolescence. That is, despite the greater CSA in girls, the bone is strategically placed to resist bending; hence, the bones of girls and boys adapt to mechanical challenges in a similar way. FAU - Forwood, Mark R AU - Forwood MR AD - Department of Anatomy and Developmental Biology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, 4072 Australia. m.forwood@uq.edu.au FAU - Bailey, Donald A AU - Bailey DA FAU - Beck, Thomas J AU - Beck TJ FAU - Mirwald, Robert L AU - Mirwald RL FAU - Baxter-Jones, Adam D G AU - Baxter-Jones AD FAU - Uusi-Rasi, Kirsti AU - Uusi-Rasi K LA - eng GR - AR44655/AR/NIAMS NIH HHS/United States PT - Journal Article PT - Research Support, Non-U.S. Gov't PT - Research Support, U.S. Gov't, P.H.S. PL - United States TA - Bone JT - Bone JID - 8504048 SB - IM MH - Adolescent MH - Child MH - Female MH - Femur Neck/*anatomy & histology/*growth & development MH - Humans MH - Linear Models MH - Male MH - Models, Biological MH - *Sex Characteristics EDAT- 2004/09/30 05:00 MHDA- 2005/02/03 09:00 CRDT- 2004/09/30 05:00 PHST- 2004/03/30 00:00 [received] PHST- 2004/06/02 00:00 [revised] PHST- 2004/06/09 00:00 [accepted] PHST- 2004/09/30 05:00 [pubmed] PHST- 2005/02/03 09:00 [medline] PHST- 2004/09/30 05:00 [entrez] AID - S8756328204002583 [pii] AID - 10.1016/j.bone.2004.06.005 [doi] PST - ppublish SO - Bone. 2004 Oct;35(4):973-81. doi: 10.1016/j.bone.2004.06.005.