PMID- 15481801 OWN - NLM STAT- MEDLINE DCOM- 20041207 LR - 20181101 IS - 0391-4097 (Print) IS - 0391-4097 (Linking) VI - 27 IP - 6 Suppl DP - 2004 TI - Energy gradients for VT-signal migration in the CNS: studies on melanocortin receptors, mitochondrial uncoupling proteins and food intake. PG - 23-34 AB - The present paper enlightens a new point of view on brain homeostasis and communication, namely how the brain takes advantage of different chemical-physical phenomena such as pressure waves, and temperature and concentration gradients to allow the homeostasis of the brain internal milieu as well as some forms of intercellular communications (volume transmission, VT) at an energy cost much lower than the classical synaptic transmission (the prototype of wiring transmission, WT). The possible melanocortin control of uncoupling protein 2 (UCP2) expression (hence of local brain temperature gradients) has been studied in relation to food intake in male Wistar rats. Osmotic minipumps were subcutaneously (sc) implanted in the midscapular region for intracerebroventricular (icv) infusion. The control rats received an icv infusion of 0.5 microl/h of artificial cerebrospinal fluid (ACSF), while experimental rats received either an icv infusion of 0.16 nmol/h of HS024 or of 0.16 nmol/h of adrenocorticotropin-(1-24) [ACTH-(1-24)]. The ACTH-treated group ate significantly less than the ACSF-treated group during the first three days of infusion, while, subsequently, food intake of the two groups was similar. On the other hand, the HS024-treated group ate significantly more (up to 153% of the control value) than ACSF- and ACTH-treated rats during the entire period. UCP2 mRNA analysis in arcuate nuclei of ACTH, HS024 and ACSF-treated animals showed a significant 75% decrease (p<0.05 vs saline) of the total specific mRNA level in the HS024-treated group vs ACSF-treated animals (control group), while no significant change was observed between ACTH- and ACSF-treated animals. Melanocortin antagonist HS024 via blockade of MCR4 increases food intake and via a reduction of UCP2 expression enhances the food consumption ratio. This result underlines the fact that UCP2 expression and food intake can be differentially regulated. In other words, via a peptidergic control the central nervous system (CNS) can modulate the energy stored from the amount of the food that the animal has eaten and also uncouple the thermal micro-gradients (dependent on UCP2 expression) and hence the VT-signal micro-migrations from the food intake. It should also be noticed that the control of the thermal gradients affects also the neuronal firing rate and hence the transmitter release (likely above all the release of peptides such as neuropeptide Y (NPY), melanin-concentrating hormone (MCH) and beta-endorphin, e.g., in the arcuate nucleus representing signals relevant to energy homeostasis). Thus, WT and VT are both modulated by peptidergic signals that affect thermal gradients. FAU - Agnati, L F AU - Agnati LF AD - Section of Physiology, Department of Medicine, University of Modena and Reggio Emilia, Modena, Italy. luigiagnati@tin.it FAU - Vergoni, A V AU - Vergoni AV FAU - Leo, G AU - Leo G FAU - Genedani, S AU - Genedani S FAU - Franco, R AU - Franco R FAU - Bertolini, A AU - Bertolini A FAU - Fuxe, K AU - Fuxe K LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't PL - Italy TA - J Endocrinol Invest JT - Journal of endocrinological investigation JID - 7806594 RN - 0 (Ion Channels) RN - 0 (Membrane Transport Proteins) RN - 0 (Mitochondrial Proteins) RN - 0 (Neuropeptide Y) RN - 0 (RNA, Messenger) RN - 0 (Receptors, Pituitary Hormone) RN - 0 (Ucp2 protein, rat) RN - 0 (Uncoupling Protein 2) RN - 60617-12-1 (beta-Endorphin) RN - 810S9KV11R (MSH receptor) RN - 9002-60-2 (Adrenocorticotropic Hormone) SB - IM MH - Adrenocorticotropic Hormone/metabolism MH - Animals MH - Body Temperature/physiology MH - Cell Communication/physiology MH - Central Nervous System/*physiology MH - Cerebral Cortex/physiology MH - Cerebrovascular Circulation/physiology MH - Eating/*physiology MH - Energy Metabolism/*physiology MH - Ion Channels MH - Male MH - Membrane Transport Proteins/*physiology MH - Mitochondria/drug effects/*metabolism MH - Mitochondrial Proteins/*physiology MH - Neuropeptide Y/physiology MH - RNA, Messenger/biosynthesis/genetics MH - Rats MH - Rats, Wistar MH - Receptors, Pituitary Hormone/*physiology MH - Reverse Transcriptase Polymerase Chain Reaction MH - Skull/physiology MH - Uncoupling Protein 2 MH - beta-Endorphin/metabolism EDAT- 2004/10/16 09:00 MHDA- 2004/12/16 09:00 CRDT- 2004/10/16 09:00 PHST- 2004/10/16 09:00 [pubmed] PHST- 2004/12/16 09:00 [medline] PHST- 2004/10/16 09:00 [entrez] PST - ppublish SO - J Endocrinol Invest. 2004;27(6 Suppl):23-34.