PMID- 15947037 OWN - NLM STAT- MEDLINE DCOM- 20051021 LR - 20131121 IS - 0022-3565 (Print) IS - 0022-3565 (Linking) VI - 314 IP - 3 DP - 2005 Sep TI - 3,4-Methylenedioxymethamphetamine (ecstasy) activates skeletal muscle nicotinic acetylcholine receptors. PG - 1267-73 AB - Adverse 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) effects are usually ascribed to neurotransmitter release in the central nervous system. Since clinical features such as fasciculations, muscle cramps, rapidly progressing hyperthermia, hyperkalemia, and rhabdomyolysis point to the skeletal muscle as additional target, we studied the effects of MDMA on native and cultured skeletal muscle. We addressed the question whether malignant hyperthermia (MH)-susceptible (MHS) muscle is predisposed to adverse MDMA reactions. Force measurements on muscle strips showed that 100 microM MDMA, a concentration close to that determined in some MDMA users, regularly enhanced the sensitivity of skeletal muscle to caffeine-induced contractures but did not cause contractures on its own. The left-shift of the dose-response curve induced by MDMA was greater in normal than in MHS muscle. Furthermore, MDMA did not release Ca(2+) from isolated sarcoplasmic reticulum vesicles. These findings do not support the view of an MH-triggering effect on muscle. However, MDMA induced Ca(2+) transients in myotubes and increased their acidification rate. Surprisingly, alpha-bungarotoxin, a specific antagonist of the nicotinic acetylcholine receptor (nAChR), abolished these MDMA effects. The nAChR agonistic action of MDMA was confirmed by patch-clamp measurements of ion currents on human embryonic kidney cells expressing nAChR. We conclude that the neuromuscular junction is a target of MDMA and that an activation of nAChR contributes to the muscle-related symptoms of MDMA users. The drug may be of particular risk in individuals with abundant extrajunctional nAChR such as in generalized denervation or muscle regeneration processes and may act on central nAChR. FAU - Klingler, Werner AU - Klingler W AD - Department of Anesthesiology, Ulm University, Germany. FAU - Heffron, James J A AU - Heffron JJ FAU - Jurkat-Rott, Karin AU - Jurkat-Rott K FAU - O'sullivan, Grainne AU - O'sullivan G FAU - Alt, Andreas AU - Alt A FAU - Schlesinger, Friedrich AU - Schlesinger F FAU - Bufler, Johannes AU - Bufler J FAU - Lehmann-Horn, Frank AU - Lehmann-Horn F LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't DEP - 20050609 PL - United States TA - J Pharmacol Exp Ther JT - The Journal of pharmacology and experimental therapeutics JID - 0376362 RN - 0 (Receptors, Nicotinic) RN - KE1SEN21RM (N-Methyl-3,4-methylenedioxyamphetamine) RN - SY7Q814VUP (Calcium) SB - IM MH - Animals MH - Calcium/metabolism MH - Cells, Cultured MH - Dose-Response Relationship, Drug MH - Humans MH - Malignant Hyperthermia/metabolism MH - Muscle Contraction/drug effects MH - Muscle Fibers, Skeletal/drug effects MH - Muscle, Skeletal/*drug effects MH - N-Methyl-3,4-methylenedioxyamphetamine/*adverse effects MH - Rats MH - Receptors, Nicotinic/*drug effects MH - Sarcoplasmic Reticulum/drug effects/metabolism EDAT- 2005/06/11 09:00 MHDA- 2005/10/22 09:00 CRDT- 2005/06/11 09:00 PHST- 2005/06/11 09:00 [pubmed] PHST- 2005/10/22 09:00 [medline] PHST- 2005/06/11 09:00 [entrez] AID - jpet.105.086629 [pii] AID - 10.1124/jpet.105.086629 [doi] PST - ppublish SO - J Pharmacol Exp Ther. 2005 Sep;314(3):1267-73. doi: 10.1124/jpet.105.086629. Epub 2005 Jun 9.