PMID- 16522779 OWN - NLM STAT- MEDLINE DCOM- 20060523 LR - 20230120 IS - 1556-6811 (Print) IS - 1556-679X (Electronic) IS - 1556-679X (Linking) VI - 13 IP - 3 DP - 2006 Mar TI - Lactic acid bacteria inducing a weak interleukin-12 and tumor necrosis factor alpha response in human dendritic cells inhibit strongly stimulating lactic acid bacteria but act synergistically with gram-negative bacteria. PG - 365-75 AB - The development and maintenance of immune homeostasis indispensably depend on signals from the gut flora. Lactic acid bacteria (LAB), which are gram-positive (G+) organisms, are plausible significant players and have received much attention. Gram-negative (G-) commensals, such as members of the family Enterobacteriaceae, may, however, be immunomodulators that are as important as G+ organisms but tend to be overlooked. Dendritic cells (DCs) are crucial immune regulators, and therefore, the present study aimed at investigating differences among human gut flora-derived LAB and G- bacteria in their patterns of DC polarization. Human monocyte-derived DCs were exposed to UV-killed bacteria, and cytokine secretion and surface marker expression were analyzed. Profound differences in the DC polarization patterns were found among the strains. While strains of LAB varied greatly in their capacity to induce interleukin-12 (IL-12) and tumor necrosis factor alpha (TNF-alpha), G- strains were consistently weak IL-12 and TNF-alpha inducers. All strains induced significant amounts of IL-10, but G- bacteria were far more potent IL-10 inducers than LAB. Interestingly, we found that when weakly IL-12- and TNF-alpha-inducing LAB and strong IL-12- and TNF-alpha-inducing LAB were mixed, the weakly IL-12- and TNF-alpha-inducing LAB efficiently inhibited otherwise strong IL-12- and TNF-alpha-inducing LAB, yet when weakly IL-12- and TNF-alpha-inducing LAB were mixed with G- bacteria, they synergistically induced IL-12 and TNF-alpha. Furthermore, strong IL-12- and TNF-alpha-inducing LAB efficiently up-regulated surface markers (CD40, CD83, CD86, and HLA-DR), which were inhibited by weakly IL-12- and TNF-alpha-inducing LAB. All G- bacteria potently up-regulated surface markers; however, these markers were not inhibited by weakly IL-12- and TNF-alpha-inducing LAB. These much divergent DC stimulation patterns among intestinal bacteria, which encompass both antagonistic and synergistic relationships, support the growing evidence that the composition of the gut flora affects immune regulation and that compositional imbalances may be involved in disease etiology. FAU - Zeuthen, Louise Hjerrild AU - Zeuthen LH AD - BioCentrum-DTU, Biochemistry and Nutrition Group, Technical University of Denmark, Building 224, DK-2800 Kgs. Lyngby, Denmark. lhz@biocentrum.dtu.dk FAU - Christensen, Hanne Risager AU - Christensen HR FAU - Frokiaer, Hanne AU - Frokiaer H LA - eng PT - Comparative Study PT - Journal Article PT - Research Support, Non-U.S. Gov't PL - United States TA - Clin Vaccine Immunol JT - Clinical and vaccine immunology : CVI JID - 101252125 RN - 0 (Lipopolysaccharides) RN - 0 (Tumor Necrosis Factor-alpha) RN - 130068-27-8 (Interleukin-10) RN - 187348-17-0 (Interleukin-12) SB - IM MH - Bifidobacterium/growth & development/*immunology MH - Cell Differentiation/immunology MH - Cells, Cultured MH - Dendritic Cells/cytology/*immunology/metabolism/microbiology MH - Enterobacteriaceae/growth & development/*immunology MH - Humans MH - Interleukin-10/biosynthesis MH - Interleukin-12/*biosynthesis MH - Lactobacillus/growth & development/*immunology MH - Lipopolysaccharides/biosynthesis MH - Tumor Necrosis Factor-alpha/*biosynthesis MH - Up-Regulation/immunology PMC - PMC1391963 EDAT- 2006/03/09 09:00 MHDA- 2006/05/24 09:00 PMCR- 2006/07/01 CRDT- 2006/03/09 09:00 PHST- 2006/03/09 09:00 [pubmed] PHST- 2006/05/24 09:00 [medline] PHST- 2006/03/09 09:00 [entrez] PHST- 2006/07/01 00:00 [pmc-release] AID - 13/3/365 [pii] AID - 0343-05 [pii] AID - 10.1128/CVI.13.3.365-375.2006 [doi] PST - ppublish SO - Clin Vaccine Immunol. 2006 Mar;13(3):365-75. doi: 10.1128/CVI.13.3.365-375.2006.