PMID- 16673420 OWN - NLM STAT- MEDLINE DCOM- 20060808 LR - 20131121 IS - 0006-3592 (Print) IS - 0006-3592 (Linking) VI - 94 IP - 4 DP - 2006 Jul 5 TI - Sequencing batch membrane biofilm reactor for simultaneous nitrogen and phosphorus removal: novel application of membrane-aerated biofilm. PG - 730-9 AB - A sequencing batch membrane biofilm reactor (SBMBfR) was developed for simultaneous carbon, nitrogen, and phosphorus removal from wastewater. This reactor was composed of two functional parts: (1) a gas-permeable membrane on which a nitrifying biofilm formed and (2) a bulk solution in which bacteria, mainly denitrifying polyphosphate-accumulating organisms (DNPAOs), were suspended. The reactor was operated sequentially under anaerobic condition and then under membrane aeration condition in one cycle. During the anaerobic period, organic carbon was consumed by DNPAOs; this was accompanied by phosphate release. During the subsequent membrane aeration period, nitrifying bacteria utilized oxygen supplied directly to them from the inside of the membrane. Consequently, the nitrite and nitrate products diffused into the bulk solution, where they were used by DNPAOs as electron acceptors for phosphate uptake. In a long-term sequencing batch operation, the mean removal efficiencies of total organic carbon (TOC), total nitrogen (T-N), and total phosphorus (T-P) under steady-state condition were 99%, 96%, and 90%, respectively. In addition, fluorescence in situ hybridization (FISH) clearly demonstrated the difference in bacterial community structure between the membrane biofilm and the suspended sludge: ammonia-oxidizing bacteria belonging to the Nitrosomonas group were dominant in the region adjacent to the membrane throughout the operation, and the occupation ratio of the well-known polyphosphate-accumulating organism (PAO) Candidatus "Accumulibacter phosphates" in the suspended sludge gradually increased to a maximum of 37%. CI - (c) 2006 Wiley Periodicals, Inc. FAU - Terada, Akihiko AU - Terada A AD - Department of Chemical Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan. FAU - Yamamoto, Tetsuya AU - Yamamoto T FAU - Tsuneda, Satoshi AU - Tsuneda S FAU - Hirata, Akira AU - Hirata A LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't PL - United States TA - Biotechnol Bioeng JT - Biotechnology and bioengineering JID - 7502021 RN - 0 (Membranes, Artificial) RN - 27YLU75U4W (Phosphorus) RN - N762921K75 (Nitrogen) SB - IM MH - Bacteria/genetics/isolation & purification MH - Bacterial Physiological Phenomena MH - Biofilms/*growth & development MH - Bioreactors MH - Biotechnology/instrumentation/methods MH - In Situ Hybridization, Fluorescence MH - Membranes, Artificial MH - Nitrogen/isolation & purification/metabolism MH - Phosphorus/isolation & purification/metabolism EDAT- 2006/05/05 09:00 MHDA- 2006/08/09 09:00 CRDT- 2006/05/05 09:00 PHST- 2006/05/05 09:00 [pubmed] PHST- 2006/08/09 09:00 [medline] PHST- 2006/05/05 09:00 [entrez] AID - 10.1002/bit.20887 [doi] PST - ppublish SO - Biotechnol Bioeng. 2006 Jul 5;94(4):730-9. doi: 10.1002/bit.20887.