PMID- 17117745 OWN - NLM STAT- MEDLINE DCOM- 20061226 LR - 20190911 IS - 1096-2247 (Print) IS - 1096-2247 (Linking) VI - 56 IP - 11 DP - 2006 Nov TI - Particle generation by ultraviolet-laser ablation during surface decontamination. PG - 1591-8 AB - A novel photonic decontamination method was developed for removal of pollutants from material surfaces. Such a method relies on the ability of a high-energy laser beam to ablate materials from a contaminated surface layer, thus producing airborne particles. In this paper, the authors presented the results obtained using a scanning mobility particle sizer (SMPS) system and an aerosol particle sizer (APS). Particles generated by laser ablation from the surfaces of cement, chromium-embedded cement, and alumina were experimentally investigated. Broad particle distributions from nanometer to micrometer in size were measured. For stainless steel, virtually no particle > 500 nm in aerodynamic size was detected. The generated particle number concentrations of all three of the materials were increased as the 266-nm laser fluence (millijoules per square centimeter) increased. Among the three materials tested, cement was found to be the most favorable for particle removal, alumina next, and stainless steel the least. Chromium (dropped in cement) showed almost no effects on particle production. For all of the materials tested except for stainless steel, bimodal size distributions were observed; a smaller mode peaked at approximately 50-70 nm was detected by SMPS and a larger mode (peaked at approximately 0.70-0.85 microm) by APS. Based on transmission electron microscopy observations, the authors concluded that particles in the range of 50-70 nm were aggregates of primary particles, and those of size larger than a few hundred nanometers were produced by different mechanisms, for example, massive object ejection from the material surfaces. FAU - Lee, Doh-Won AU - Lee DW AD - Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6038, USA. FAU - Cheng, Meng-Dawn AU - Cheng MD LA - eng PT - Journal Article PL - United States TA - J Air Waste Manag Assoc JT - Journal of the Air & Waste Management Association (1995) JID - 9503111 RN - 0 (Particulate Matter) RN - 0R0008Q3JB (Chromium) RN - 12597-68-1 (Stainless Steel) RN - LMI26O6933 (Aluminum Oxide) SB - IM MH - Aluminum Oxide MH - Chromium/chemistry MH - Decontamination/instrumentation/*methods MH - *Lasers MH - Microscopy, Electron, Transmission MH - Nanoparticles/*analysis/ultrastructure MH - Particle Size MH - Particulate Matter/*analysis MH - Stainless Steel MH - *Ultraviolet Rays EDAT- 2006/11/23 09:00 MHDA- 2006/12/27 09:00 CRDT- 2006/11/23 09:00 PHST- 2006/11/23 09:00 [pubmed] PHST- 2006/12/27 09:00 [medline] PHST- 2006/11/23 09:00 [entrez] AID - 10.1080/10473289.2006.10464555 [doi] PST - ppublish SO - J Air Waste Manag Assoc. 2006 Nov;56(11):1591-8. doi: 10.1080/10473289.2006.10464555.