PMID- 17438758 OWN - NLM STAT- MEDLINE DCOM- 20070815 LR - 20190715 IS - 0013-936X (Print) IS - 0013-936X (Linking) VI - 41 IP - 7 DP - 2007 Apr 1 TI - Coupling passive air sampling with emission estimates and chemical fate modeling for persistent organic pollutants (POPs): a feasibility study for Northern Europe. PG - 2165-71 AB - Passive air samplers (polyurethane foam disks) were deployed at 23 background locations along a broadly west-east transect in 8 northern European countries and analyzed for PCBs, PBDEs, PAHs, and a range of organochlorine pesticides (HCB, DDTs, and DDEs). PCBs and PAHs were highest at the center of the transect (Denmark) and lowest in northern Norway. HCB was relatively uniformly distributed, reflecting its persistence and high degree of mixing in air. Higher DDE and DDT levels occurred in Eastern Europe and at several sites in Central Europe. PBDE levels were generally similar at all sites, but lower for some locations in Eastern Europe and Ireland. Emissions information for PCBs, HCB, and PBDEs was used as input for a multi-media chemical fate model, to generate predicted air concentrations and compare with these measured values. Different scenarios were highlighted by this exercise: (i) country and compound combinations where the national inventory gave predicted air concentrations in close agreement with those measured (e.g., PCBs in the UK); (ii) country and compound combinations where predicted concentrations were well below those measured, but where advection of emissions from elsewhere is likely to be important (e.g., PCBs in Norway); (iii) consistent underestimation of compound concentrations by the emissions modeling (i.e., HCB); and (iv) general overestimation of ambient concentrations (i.e., PBDEs). Air mass trajectory analysis showed the likely role of long-range atmospheric transport (LRAT) on national levels. In general, advection from the south and west of Europe appeared to contribute to ambient POPs levels for countries in the center and northeast of the transect. Guidelines are presented as to how countries that want to assess their POPs source inventories can do so with this relatively cheap initial screening approach. FAU - Gioia, Rosalinda AU - Gioia R AD - Centre for Chemicals Management, Department of Environmental Science, Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK. FAU - Sweetman, Andy J AU - Sweetman AJ FAU - Jones, Kevin C AU - Jones KC LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't PL - United States TA - Environ Sci Technol JT - Environmental science & technology JID - 0213155 RN - 0 (Air Pollutants) RN - 0 (Halogenated Diphenyl Ethers) RN - 0 (Hydrocarbons, Chlorinated) RN - 0 (Pesticides) RN - 0 (Phenyl Ethers) RN - 0 (Polycyclic Aromatic Hydrocarbons) RN - 0 (polychlorinated diphenyl ethers) RN - DFC2HB4I0K (Polychlorinated Biphenyls) SB - IM MH - *Air Movements MH - Air Pollutants/*analysis MH - Air Pollution/*analysis MH - Environmental Monitoring/*statistics & numerical data MH - Europe MH - Halogenated Diphenyl Ethers MH - Hydrocarbons, Chlorinated/analysis MH - *Models, Chemical MH - Pesticides/analysis MH - Phenyl Ethers/analysis MH - Polychlorinated Biphenyls/analysis MH - Polycyclic Aromatic Hydrocarbons/analysis EDAT- 2007/04/19 09:00 MHDA- 2007/08/19 09:00 CRDT- 2007/04/19 09:00 PHST- 2007/04/19 09:00 [pubmed] PHST- 2007/08/19 09:00 [medline] PHST- 2007/04/19 09:00 [entrez] AID - 10.1021/es0626739 [doi] PST - ppublish SO - Environ Sci Technol. 2007 Apr 1;41(7):2165-71. doi: 10.1021/es0626739.