PMID- 17805306 OWN - NLM STAT- MEDLINE DCOM- 20080902 LR - 20200319 IS - 0893-133X (Print) IS - 0893-133X (Linking) VI - 33 IP - 8 DP - 2008 Jul TI - Erythropoietin prevents haloperidol treatment-induced neuronal apoptosis through regulation of BDNF. PG - 1942-51 AB - Functional alterations in the neurotrophin, brain-derived neurotrophic factor (BDNF) have recently been implicated in the pathophysiology of schizophrenia. Furthermore, animal studies have indicated that several antipsychotic drugs have time-dependent (and differential) effects on BDNF levels in the brain. For example, our previous studies in rats indicated that chronic treatment with the conventional antipsychotic, haloperidol, was associated with decreases in BDNF (and other neurotrophins) in the brain as well as deficits in cognitive function (an especially important consideration for the therapeutics of schizophrenia). Additional studies indicate that haloperidol has other deleterious effects on the brain (eg increased apoptosis). Despite such limitations, haloperidol remains one of the more commonly prescribed antipsychotic agents worldwide due to its efficacy for the positive symptoms of schizophrenia and its low cost. Interestingly, the hematopoietic hormone, erythropoietin, in its recombinant human form rhEPO has been reported to increase the expression of BDNF in neuronal tissues and to have neuroprotective effects. Such observations provided the impetus for us to investigate in the present study whether co-treatment of rhEPO with haloperidol could sustain the normal levels of BDNF in vivo in rats and in vitro in cortical neuronal cultures and further, whether BDNF could prevent haloperidol-induced apoptosis through the regulation of key apoptotic/antiapoptotic markers. The results indicated that rhEPO prevented the haloperidol-induced reduction in BDNF in both in vivo and in vitro experimental conditions. The sustained levels of BDNF in rats with rhEPO prevented the haloperidol-induced increase in caspase-3 (p<0.05) and decrease in Bcl-xl (p<0.01) protein levels. Similarly, in vitro experiments showed that rhEPO prevented (p<0.001) the haloperidol-induced neuronal cell death as well as the decrease in Bcl-xl levels (p<0.01). These findings may have significant implications for the development of neuroprotective strategies to improve clinical outcomes when antipsychotic drugs are used chronically. FAU - Pillai, Anilkumar AU - Pillai A AD - Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta, GA 30904, USA. apillai@mail.mcg.edu FAU - Dhandapani, Krishnan M AU - Dhandapani KM FAU - Pillai, Bindu A AU - Pillai BA FAU - Terry, Alvin V Jr AU - Terry AV Jr FAU - Mahadik, Sahebarao P AU - Mahadik SP LA - eng GR - MH 066233/MH/NIMH NIH HHS/United States PT - Journal Article PT - Research Support, N.I.H., Extramural DEP - 20070905 PL - England TA - Neuropsychopharmacology JT - Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology JID - 8904907 RN - 0 (Antipsychotic Agents) RN - 0 (Apoptosis Regulatory Proteins) RN - 0 (Brain-Derived Neurotrophic Factor) RN - 0 (MAP2 protein, rat) RN - 0 (Microtubule-Associated Proteins) RN - 0 (Recombinant Proteins) RN - 0 (bcl-Associated Death Protein) RN - 11096-26-7 (Erythropoietin) RN - EC 3.4.22.- (Caspase 3) RN - J6292F8L3D (Haloperidol) SB - IM MH - Animals MH - Antipsychotic Agents/*antagonists & inhibitors/*pharmacology MH - Apoptosis/*drug effects MH - Apoptosis Regulatory Proteins/metabolism MH - Blotting, Western MH - Brain-Derived Neurotrophic Factor/*biosynthesis MH - Caspase 3/metabolism MH - Cell Death/drug effects MH - Cell Survival/drug effects MH - Cells, Cultured MH - Cerebral Cortex/cytology/drug effects/metabolism MH - Erythropoietin/*pharmacology MH - Gene Expression Regulation/drug effects MH - Haloperidol/*antagonists & inhibitors/*pharmacology MH - Immunohistochemistry MH - Male MH - Mice MH - Microtubule-Associated Proteins/metabolism MH - Neurons/*drug effects/*metabolism MH - Rats MH - Rats, Sprague-Dawley MH - Recombinant Proteins MH - bcl-Associated Death Protein/metabolism EDAT- 2007/09/07 09:00 MHDA- 2008/09/03 09:00 CRDT- 2007/09/07 09:00 PHST- 2007/09/07 09:00 [pubmed] PHST- 2008/09/03 09:00 [medline] PHST- 2007/09/07 09:00 [entrez] AID - 1301566 [pii] AID - 10.1038/sj.npp.1301566 [doi] PST - ppublish SO - Neuropsychopharmacology. 2008 Jul;33(8):1942-51. doi: 10.1038/sj.npp.1301566. Epub 2007 Sep 5.