PMID- 17827270 OWN - NLM STAT- MEDLINE DCOM- 20080114 LR - 20220408 IS - 0032-0889 (Print) IS - 1532-2548 (Electronic) IS - 0032-0889 (Linking) VI - 145 IP - 3 DP - 2007 Nov TI - Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation. PG - 1043-51 AB - The phytochrome (phy) family of sensory photoreceptors (phyA-phyE in Arabidopsis thaliana) induces changes in target-gene expression upon light-induced translocation to the nucleus, where certain members interact with selected members of the constitutively nuclear basic helix-loop-helix transcription factor family, such as PHYTOCHROME-INTERACTING FACTOR3 (PIF3). Previous evidence indicates that the binding of the photoactivated photoreceptor molecule to PIF3 induces rapid phosphorylation of the transcription factor in the cell prior to its degradation via the ubiqitin-proteosome system. To investigate whether this apparent primary signaling mechanism can be generalized to other phy-interacting partners, we have examined the molecular behavior of a second related phy-interacting member of the basic helix-loop-helix family, PIF5, during early deetiolation, immediately following initial exposure of dark-grown seedlings to light. The data show that red light induces very rapid phosphorylation and subsequent degradation (t(1/2) < 5 min) of PIF5 via the proteosome system upon irradiation. Photobiological and genetic evidence indicates that the photoactivated phy molecule acts within 60 s to induce this phosphorylation of PIF5, and that phyA and phyB redundantly dominate this process, with phyD playing an apparently minor role. Collectively, the data support the proposal that the rapid phy-induced phosphorylation of PIF3 and PIF5 may represent the biochemical mechanism of primary signal transfer from photoactivated photoreceptor to binding partner, and that phyA and phyB (and possibly phyD) may signal to multiple, shared partners utilizing this common mechanism. FAU - Shen, Yu AU - Shen Y AD - Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA. FAU - Khanna, Rajnish AU - Khanna R FAU - Carle, Christine M AU - Carle CM FAU - Quail, Peter H AU - Quail PH LA - eng GR - GM-47475/GM/NIGMS NIH HHS/United States PT - Journal Article PT - Research Support, N.I.H., Extramural PT - Research Support, U.S. Gov't, Non-P.H.S. DEP - 20070907 PL - United States TA - Plant Physiol JT - Plant physiology JID - 0401224 RN - 0 (Arabidopsis Proteins) RN - 0 (Basic Helix-Loop-Helix Transcription Factors) RN - 0 (PHYA protein, Arabidopsis) RN - 0 (PHYB protein, Arabidopsis) RN - 0 (PIF5 protein, Arabidopsis) RN - 0 (Phytochrome A) RN - 136250-22-1 (Phytochrome B) SB - IM MH - Arabidopsis/genetics/*metabolism/*radiation effects MH - Arabidopsis Proteins/genetics/*metabolism MH - Basic Helix-Loop-Helix Transcription Factors/genetics/*metabolism MH - Gene Expression Regulation, Plant/radiation effects MH - *Light MH - Phosphorylation/radiation effects MH - Phytochrome A/genetics/*metabolism MH - Phytochrome B/genetics/*metabolism MH - Protein Binding MH - Protein Denaturation PMC - PMC2048774 EDAT- 2007/09/11 09:00 MHDA- 2008/01/15 09:00 PMCR- 2007/11/01 CRDT- 2007/09/11 09:00 PHST- 2007/09/11 09:00 [pubmed] PHST- 2008/01/15 09:00 [medline] PHST- 2007/09/11 09:00 [entrez] PHST- 2007/11/01 00:00 [pmc-release] AID - pp.107.105601 [pii] AID - 105601 [pii] AID - 10.1104/pp.107.105601 [doi] PST - ppublish SO - Plant Physiol. 2007 Nov;145(3):1043-51. doi: 10.1104/pp.107.105601. Epub 2007 Sep 7.