PMID- 18473828 OWN - NLM STAT- MEDLINE DCOM- 20090316 LR - 20191110 IS - 1875-5739 (Electronic) IS - 1567-2026 (Linking) VI - 5 IP - 2 DP - 2008 May TI - MIP-1alpha and MCP-1 Induce Migration of Human Umbilical Cord Blood Cells in Models of Stroke. PG - 118-24 AB - Monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein (MIP-1alpha) are implicated in monocyte infiltration into the central nervous system (CNS) under pathological conditions. We previously showed that in vivo human umbilical cord blood cells (HUCB) migrate toward brain injury after middle cerebral artery occlusion (MCAO). We hypothesized that MCP-1 and MIP-1alpha may participate in the recruitment of HUCB towards the injury. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO), and 24 hours later the production of MCP-1 and MIP-1alpha in the brain was examined with immunohistochemistry, ELISA, and western blotting. The chemotactic effect of MCP-1 and MIP-1alpha, and the expression of MCP-1 receptor CCR2 and MIP-1alpha receptor CCR1, CCR5 on the surface of HUCB were also examined. MCP-1 and MIP-1alpha expression were significantly increased in the ischemic hemisphere of brain, and significantly promoted HUCB cell migration compared to the contralateral side. This cell migration was neutralized with polyclonal antibodies against MCP-1 or MIP-1alpha. Also chemokine receptors were constitutively expressed on the surface of HUCB cells. The data suggested that the increased chemokines in the ischemic area can bind cell surface receptors on HUCB, and induce cell infiltration of systemically delivered HUCB cells into the CNS in vivo. FAU - Jiang, Lixian AU - Jiang L AD - Center of Excellence for Aging & Brain Repair, MDC78, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa FL 33612, USA. FAU - Newman, Mary AU - Newman M FAU - Saporta, Samuel AU - Saporta S FAU - Chen, Ning AU - Chen N FAU - Sanberg, Cyndy AU - Sanberg C FAU - Sanberg, Paul R AU - Sanberg PR FAU - Willing, Alison E AU - Willing AE LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't PL - United Arab Emirates TA - Curr Neurovasc Res JT - Current neurovascular research JID - 101208439 RN - 0 (Ccl2 protein, rat) RN - 0 (Chemokine CCL2) RN - 0 (Chemokine CCL3) RN - 0 (Receptors, Chemokine) RN - 0 (TUBB3 protein, human) RN - 0 (Tubulin) SB - IM MH - Animals MH - Brain/cytology MH - Cell Movement MH - Cells, Cultured MH - Chemokine CCL2/metabolism/*therapeutic use MH - Chemokine CCL3/metabolism/*therapeutic use MH - Disease Models, Animal MH - Embryo, Mammalian MH - Fetal Blood/*cytology MH - Humans MH - Neuroglia MH - Neurons MH - Random Allocation MH - Rats MH - Rats, Sprague-Dawley MH - Receptors, Chemokine MH - Stroke/*drug therapy/*surgery MH - Tubulin/metabolism EDAT- 2008/05/14 09:00 MHDA- 2009/03/17 09:00 CRDT- 2008/05/14 09:00 PHST- 2008/05/14 09:00 [pubmed] PHST- 2009/03/17 09:00 [medline] PHST- 2008/05/14 09:00 [entrez] AID - 10.2174/156720208784310259 [doi] PST - ppublish SO - Curr Neurovasc Res. 2008 May;5(2):118-24. doi: 10.2174/156720208784310259.