PMID- 18483250 OWN - NLM STAT- MEDLINE DCOM- 20080624 LR - 20230202 IS - 1538-7445 (Electronic) IS - 0008-5472 (Linking) VI - 68 IP - 10 DP - 2008 May 15 TI - Reduced susceptibility to two-stage skin carcinogenesis in mice with low circulating insulin-like growth factor I levels. PG - 3680-8 LID - 10.1158/0008-5472.CAN-07-6271 [doi] AB - Calorie restriction has been shown to inhibit epithelial carcinogenesis and this method of dietary restriction reduces many circulating proteins, including insulin-like growth factor I (IGF-I). Previously, we identified a relationship between elevated tissue IGF-I levels and enhanced susceptibility to chemically induced skin tumorigenesis. In this study, liver IGF-I-deficient (LID) mice, which have a 75% reduction in serum IGF-I, were subjected to the standard two-stage skin carcinogenesis protocol using 7,12-dimethylbenz(a)anthracene as the initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as the promoter. We observed a significant reduction in epidermal thickness and labeling index in LID mice treated with either vehicle or TPA. A significant decrease in both tumor incidence and tumor multiplicity was observed in LID mice undergoing two-stage skin carcinogenesis relative to wild-type littermates. Western blot analyses of epidermal extracts revealed reduced activation of both the epidermal growth factor and IGF-I receptors in response to TPA treatment in LID mice. In addition, reduced activation of both Akt and the mammalian target of rapamycin (mTOR) was observed in LID mice following TPA treatment relative to wild-type controls. Signaling downstream of mTOR was also reduced. These data suggest a possible mechanism whereby reduced circulating IGF-I leads to attenuated activation of the Akt and mTOR signaling pathways, and thus, diminished epidermal response to tumor promotion, and ultimately, two-stage skin carcinogenesis. The current data also suggest that reduced circulating IGF-I levels which occur as a result of calorie restriction may lead to the inhibition of skin tumorigenesis, at least in part, by a similar mechanism. FAU - Moore, Tricia AU - Moore T AD - The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, USA. FAU - Carbajal, Steve AU - Carbajal S FAU - Beltran, Linda AU - Beltran L FAU - Perkins, Susan N AU - Perkins SN FAU - Yakar, Shoshana AU - Yakar S FAU - Leroith, Derek AU - Leroith D FAU - Hursting, Stephen D AU - Hursting SD FAU - Digiovanni, John AU - Digiovanni J LA - eng GR - ES007784/ES/NIEHS NIH HHS/United States GR - CA16672/CA/NCI NIH HHS/United States GR - CA37111/CA/NCI NIH HHS/United States GR - ES007247/ES/NIEHS NIH HHS/United States PT - Journal Article PT - Research Support, N.I.H., Extramural PL - United States TA - Cancer Res JT - Cancer research JID - 2984705R RN - 0 (Benz(a)Anthracenes) RN - 2564-65-0 (7,12-dihydroxymethylbenz(a)anthracene) RN - 67763-96-6 (Insulin-Like Growth Factor I) RN - EC 2.7.- (Protein Kinases) RN - EC 2.7.1.1 (mTOR protein, mouse) RN - EC 2.7.11.1 (TOR Serine-Threonine Kinases) RN - NI40JAQ945 (Tetradecanoylphorbol Acetate) SB - IM MH - Animals MH - Benz(a)Anthracenes/pharmacology MH - Cell Proliferation MH - Cell Transformation, Neoplastic MH - Epidermis/metabolism MH - Female MH - *Genetic Predisposition to Disease MH - Insulin-Like Growth Factor I/*biosynthesis MH - Mice MH - Models, Biological MH - Neoplasms/metabolism MH - Protein Kinases/metabolism MH - Signal Transduction MH - Skin Neoplasms/chemically induced/*genetics/*pathology MH - TOR Serine-Threonine Kinases MH - Tetradecanoylphorbol Acetate/pharmacology EDAT- 2008/05/17 09:00 MHDA- 2008/06/25 09:00 CRDT- 2008/05/17 09:00 PHST- 2008/05/17 09:00 [pubmed] PHST- 2008/06/25 09:00 [medline] PHST- 2008/05/17 09:00 [entrez] AID - 68/10/3680 [pii] AID - 10.1158/0008-5472.CAN-07-6271 [doi] PST - ppublish SO - Cancer Res. 2008 May 15;68(10):3680-8. doi: 10.1158/0008-5472.CAN-07-6271.