PMID- 18852517 OWN - NLM STAT- MEDLINE DCOM- 20090203 LR - 20131121 IS - 1017-7825 (Print) IS - 1017-7825 (Linking) VI - 18 IP - 9 DP - 2008 Sep TI - Age- and area-dependent distinct effects of ethanol on Bax and Bcl-2 expression in prenatal rat brain. PG - 1590-8 AB - Cell proliferation and differentiation are critical processes in a developing fetal rat brain, during which programmed cell death (PCD) also plays an important role. One of the decisive factors for PCD is Bcl-2 family proteins, where Bax induces cell death, whereas Bcl-2 acts as an inhibitor of PCD. As maternal drinking is known to cause fetal alcohol syndrome (FAS) or malformation of the fetal brain during pregnancy, the objective of the present study was to investigate whether maternal ethanol exposure alters the PCD-related Bax and Bcl-2 protein expression during fetal brain development. Pregnant female rats were orally treated with 10% ethanol and the subsequent expressions of the Bax and Bcl-2 proteins examined in the fetal brain, including the forebrain, midbrain, and hindbrain, from gestational day (GD) 15.5 to GD 19.5, using Western blots, in situ hybridization, and immunohistochemistry. With regard to the ratio of Bcl-2 to Bax proteins (Bcl-2/Bax), the Bax protein was dominant in the forebrain and midbrain of the control GD 15.5 fetuses, except for the hindbrain, when compared with the respective ethanol-treated groups. Moreover, Bcl-2 became dominant in the midbrain of the control GD 17.5 fetuses when compared with the ethanoltreated group, representing an alternation of the natural PCD process by ethanol. Furthermore, a differential expression of the Bcl-2 and Bax proteins was found in the differentiating and migrating zones of the cortex, hippocampus, thalamus, and cerebellum. Thus, when taken together, the present results suggest that ethanol affects PCD in the cell differentiation and migration zones of the prenatal rat brain by modulating Bax and Bcl-2 expression in an age- and area-dependent manner. Therefore, this is the first evidence that ethanol may alter FAS-associated embryonic brain development through the alteration of Bax and Bcl-2 expression. FAU - Lee, Hae Young AU - Lee HY AD - Division of Life Science and Applied Life Science (Brain Korea 21), Gyeongsang National University, Jinju 660-701, Korea. FAU - Naha, Nibedita AU - Naha N FAU - Kim, Jong Hun AU - Kim JH FAU - Jo, Mi Ja AU - Jo MJ FAU - Min, Kwan Sik AU - Min KS FAU - Seong, Hwan Hoo AU - Seong HH FAU - Shin, Dong Hoon AU - Shin DH FAU - Kim, Myeong Ok AU - Kim MO LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't PL - Korea (South) TA - J Microbiol Biotechnol JT - Journal of microbiology and biotechnology JID - 9431852 RN - 0 (Bax protein, rat) RN - 0 (Proto-Oncogene Proteins c-bcl-2) RN - 0 (RNA, Messenger) RN - 0 (bcl-2-Associated X Protein) RN - 3K9958V90M (Ethanol) SB - IM MH - Analysis of Variance MH - Animals MH - Apoptosis MH - Brain/drug effects/*embryology/*metabolism MH - Ethanol/administration & dosage/*toxicity MH - Female MH - Fetal Alcohol Spectrum Disorders/metabolism MH - Gene Expression Regulation, Developmental/*drug effects MH - Gestational Age MH - Immunohistochemistry MH - Pregnancy MH - Proto-Oncogene Proteins c-bcl-2/genetics/*metabolism MH - RNA, Messenger/genetics/metabolism MH - Rats MH - Rats, Sprague-Dawley MH - bcl-2-Associated X Protein/genetics/*metabolism EDAT- 2008/10/15 09:00 MHDA- 2009/02/04 09:00 CRDT- 2008/10/15 09:00 PHST- 2008/10/15 09:00 [pubmed] PHST- 2009/02/04 09:00 [medline] PHST- 2008/10/15 09:00 [entrez] AID - 7523 [pii] PST - ppublish SO - J Microbiol Biotechnol. 2008 Sep;18(9):1590-8.