PMID- 19602725 OWN - NLM STAT- MEDLINE DCOM- 20091102 LR - 20220819 IS - 1083-351X (Electronic) IS - 0021-9258 (Print) IS - 0021-9258 (Linking) VI - 284 IP - 37 DP - 2009 Sep 11 TI - Critical role of nuclear calcium/calmodulin-dependent protein kinase IIdeltaB in cardiomyocyte survival in cardiomyopathy. PG - 24857-68 LID - 10.1074/jbc.M109.003186 [doi] AB - Calcium/calmodulin-dependent protein kinase II (CaMKII) plays a central role in cardiac contractility and heart disease. However, the specific role of alternatively spliced variants of CaMKII in cardiac disease and apoptosis remains poorly explored. Here we report that the deltaB subunit of CaMKII (CaMKIIdeltaB), which is the predominant nuclear isoform of calcium/calmodulin-dependent protein kinases in heart muscle, acts as an anti-apoptotic factor and is a novel target of the antineoplastic and cardiomyopathic drug doxorubicin (Dox (adriamycin)). Hearts of rats that develop cardiomyopathy following chronic treatment with Dox also show down-regulation of CaMKIIdeltaB mRNA, which correlates with decreased cardiac function in vivo, reduced expression of sarcomeric proteins, and increased tissue damage associated with Dox cardiotoxicity. Overexpression of CaMKIIdeltaB in primary cardiac cells inhibits Dox-mediated apoptosis and prevents the loss of the anti-apoptotic protein Bcl-2. Specific silencing of CaMKIIdeltaB by small interfering RNA prevents the formation of organized sarcomeres and decreases the expression of Bcl-2, which all mimic the effect of Dox. CaMKIIdeltaB is required for GATA-4-mediated co-activation and binding to the Bcl-2 promoter. These results reveal that CaMKIIdeltaB plays an essential role in cardiomyocyte survival and provide a mechanism for the protective role of CaMKIIdeltaB. These results suggest that selective targeting of CaMKII in the nuclear compartment might represent a strategy to regulate cardiac apoptosis and to reduce Dox-mediated cardiotoxicity. FAU - Little, Gillian H AU - Little GH AD - Department of Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA. FAU - Saw, Aman AU - Saw A FAU - Bai, Yan AU - Bai Y FAU - Dow, Joan AU - Dow J FAU - Marjoram, Paul AU - Marjoram P FAU - Simkhovich, Boris AU - Simkhovich B FAU - Leeka, Justin AU - Leeka J FAU - Kedes, Larry AU - Kedes L FAU - Kloner, Robert A AU - Kloner RA FAU - Poizat, Coralie AU - Poizat C LA - eng GR - C06 CA62528-01/CA/NCI NIH HHS/United States GR - C06 CA062528/CA/NCI NIH HHS/United States GR - C06 RR10600-01/RR/NCRR NIH HHS/United States GR - C06 RR014514-01/RR/NCRR NIH HHS/United States GR - C06 RR014514/RR/NCRR NIH HHS/United States PT - Journal Article PT - Research Support, N.I.H., Extramural PT - Research Support, Non-U.S. Gov't DEP - 20090714 PL - United States TA - J Biol Chem JT - The Journal of biological chemistry JID - 2985121R RN - 0 (Proto-Oncogene Proteins c-bcl-2) RN - EC 2.7.11.17 (Calcium-Calmodulin-Dependent Protein Kinase Type 2) SB - IM MH - Animals MH - Apoptosis MH - Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism/*physiology MH - Cardiomyopathies/*enzymology/pathology MH - Cell Nucleus/*metabolism MH - Cell Survival MH - Down-Regulation MH - Female MH - Gene Expression Profiling MH - Gene Silencing MH - Myocytes, Cardiac/*enzymology MH - Proto-Oncogene Proteins c-bcl-2/metabolism MH - Rats MH - Rats, Sprague-Dawley MH - Transfection PMC - PMC2757189 EDAT- 2009/07/16 09:00 MHDA- 2009/11/03 06:00 PMCR- 2010/09/11 CRDT- 2009/07/16 09:00 PHST- 2009/07/16 09:00 [entrez] PHST- 2009/07/16 09:00 [pubmed] PHST- 2009/11/03 06:00 [medline] PHST- 2010/09/11 00:00 [pmc-release] AID - S0021-9258(20)30574-3 [pii] AID - M109.003186 [pii] AID - 10.1074/jbc.M109.003186 [doi] PST - ppublish SO - J Biol Chem. 2009 Sep 11;284(37):24857-68. doi: 10.1074/jbc.M109.003186. Epub 2009 Jul 14.