PMID- 20664817 OWN - NLM STAT- PubMed-not-MEDLINE LR - 20240502 IS - 1424-8247 (Print) IS - 1424-8247 (Electronic) IS - 1424-8247 (Linking) VI - 3 IP - 4 DP - 2010 Mar 30 TI - Antiproliferative Properties of Type I and Type II Interferon. PG - 994-1015 AB - The clinical possibilities of interferon (IFN) became apparent with early studies demonstrating that it was capable of inhibiting tumor cells in culture and in vivo using animal models. IFN gained the distinction of being the first recombinant cytokine to be licensed in the USA for the treatment of a malignancy in 1986, with the approval of IFN-alpha2a (Hoffman-La Roche) and IFN-alpha2b (Schering-Plough) for the treatment of Hairy Cell Leukemia. In addition to this application, other approved antitumor applications for IFN-alpha2a are AIDS-related Kaposi's Sarcoma and Chronic Myelogenous Leukemia (CML) and other approved antitumor applications for IFN-alpha2b are Malignant Melanoma, Follicular Lymphoma, and AIDS-related Kapoisi's Sarcoma. In the ensuing years, a considerable number of studies have been conducted to establish the mechanisms of the induction and action of IFN's anti-tumor activity. These include identifying the role of Interferon Regulatory Factor 9 (IRF9) as a key factor in eliciting the antiproliferative effects of IFN-alpha as well as identifying genes induced by IFN that are involved in recognition of tumor cells. Recent studies also show that IFN-activated human monocytes can be used to achieve >95% eradication of select tumor cells. The signaling pathways by which IFN induces apoptosis can vary. IFN treatment induces the tumor suppressor gene p53, which plays a role in apoptosis for some tumors, but it is not essential for the apoptotic response. IFN-alpha also activates phosphatidylinositol 3-kinase (PI3K), which is associated with cell survival. Downstream of PI3K is the mammalian target of rapamycin (mTOR) which, in conjunction with PI3K, may act in signaling induced by growth factors after IFN treatment. This paper will explore the mechanisms by which IFN acts to elicit its antiproliferative effects and more closely examine the clinical applications for the anti-tumor potential of IFN. FAU - Bekisz, Joseph AU - Bekisz J AD - National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. FAU - Baron, Samuel AU - Baron S FAU - Balinsky, Corey AU - Balinsky C FAU - Morrow, Angel AU - Morrow A FAU - Zoon, Kathryn C AU - Zoon KC LA - eng GR - Z99 AI999999/ImNIH/Intramural NIH HHS/United States PT - Journal Article PL - Switzerland TA - Pharmaceuticals (Basel) JT - Pharmaceuticals (Basel, Switzerland) JID - 101238453 PMC - PMC2907165 MID - NIHMS199733 EDAT- 2010/07/29 06:00 MHDA- 2010/07/29 06:01 PMCR- 2010/04/01 CRDT- 2010/07/29 06:00 PHST- 2010/07/29 06:00 [entrez] PHST- 2010/07/29 06:00 [pubmed] PHST- 2010/07/29 06:01 [medline] PHST- 2010/04/01 00:00 [pmc-release] AID - pharmaceuticals-03-00994 [pii] AID - 10.3390/ph3040994 [doi] PST - ppublish SO - Pharmaceuticals (Basel). 2010 Mar 30;3(4):994-1015. doi: 10.3390/ph3040994.