PMID- 20695606 OWN - NLM STAT- PubMed-not-MEDLINE DCOM- 20101122 LR - 20100810 IS - 1520-5827 (Electronic) IS - 0743-7463 (Linking) VI - 26 IP - 16 DP - 2010 Aug 17 TI - Nonaligned carbon nanotubes partially embedded in polymer matrixes: a novel route to superhydrophobic conductive surfaces. PG - 13572-8 LID - 10.1021/la101827c [doi] AB - A new method for transforming common polymers into superhydrophobic conductive surfaces, with both a high static water contact angle (approximately 160 degrees) and a low sliding angle (2.0 degrees-4.5 degrees), and a low sheet resistance on the order of 10(1)-10(3) ohms/sq is presented. A layer of multiwalled carbon nanotubes (MWNTs) is first distributed on the surface of a polymer substrate, then by a single step of pressing, the MWNTs are partially embedded inside the substrate surface and form a superhydrophobic coating with a "carpet-" or "hair"-like morphology. The infiltration of polymer melts into the porous MWNT layer follows Darcy's law, and the pressing time greatly influence the morphology and superhydrophobicity. Moreover, the coating can be electrically heated by 20-70 degrees C with a voltage as low as 4-8 V at an electric energy density below 1.6 J/cm(2) and therefore can be used for deicing applications. Hydroxylation and fluoroalkylsilane treatment can greatly improve the stability of the superhydrophobicity of MWNTs. This method is convenient and applicable to a variety of thermoplastic polymers and nonpolymer substrates coated by silicone rubber. FAU - Peng, Mao AU - Peng M AD - MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China. pengmao@zju.edu.cn FAU - Liao, Zhangjie AU - Liao Z FAU - Qi, Ji AU - Qi J FAU - Zhou, Zhi AU - Zhou Z LA - eng PT - Journal Article PL - United States TA - Langmuir JT - Langmuir : the ACS journal of surfaces and colloids JID - 9882736 EDAT- 2010/08/11 06:00 MHDA- 2010/08/11 06:01 CRDT- 2010/08/11 06:00 PHST- 2010/08/11 06:00 [entrez] PHST- 2010/08/11 06:00 [pubmed] PHST- 2010/08/11 06:01 [medline] AID - 10.1021/la101827c [doi] PST - ppublish SO - Langmuir. 2010 Aug 17;26(16):13572-8. doi: 10.1021/la101827c.