PMID- 21302779 OWN - NLM STAT- MEDLINE DCOM- 20110311 LR - 20211020 IS - 0094-2405 (Print) IS - 0094-2405 (Electronic) IS - 0094-2405 (Linking) VI - 37 IP - 12 DP - 2010 Dec TI - Joint correction of respiratory motion artifact and partial volume effect in lung/thoracic PET/CT imaging. PG - 6221-32 AB - PURPOSE: Respiratory motion artifacts and partial volume effects (PVEs) are two degrading factors that affect the accuracy of image quantification in PET/CT imaging. In this article, the authors propose a joint motion and PVE correction approach (JMPC) to improve PET quantification by simultaneously correcting for respiratory motion artifacts and PVE in patients with lung/thoracic cancer. The objective of this article is to describe this approach and evaluate its performance using phantom and patient studies. METHODS: The proposed joint correction approach incorporates a model of motion blurring, PVE, and object size/shape. A motion blurring kernel (MBK) is then estimated from the deconvolution of the joint model, while the activity concentration (AC) of the tumor is estimated from the normalization of the derived MBK. To evaluate the performance of this approach, two phantom studies and eight patient studies were performed. In the phantom studies, two motion waveforms-a linear sinusoidal and a circular motion-were used to control the motion of a sphere, while in the patient studies, all participants were instructed to breathe regularly. For the phantom studies, the resultant MBK was compared to the true MBK by measuring a correlation coefficient between the two kernels. The measured sphere AC derived from the proposed method was compared to the true AC as well as the ACs in images exhibiting PVE only and images exhibiting both PVE and motion blurring. For the patient studies, the resultant MBK was compared to the motion extent derived from a 4D-CT study, while the measured tumor AC was compared to the AC in images exhibiting both PVE and motion blurring. RESULTS: For the phantom studies, the estimated MBK approximated the true MBK with an average correlation coefficient of 0.91. The tumor ACs following the joint correction technique were similar to the true AC with an average difference of 2%. Furthermore, the tumor ACs on the PVE only images and images with both motion blur and PVE effects were, on average, 75% and 47.5% (10%) of the true AC, respectively, for the linear (circular) motion phantom study. For the patient studies, the maximum and mean AC/SUV on the PET images following the joint correction are, on average, increased by 125.9% and 371.6%, respectively, when compared to the PET images with both PVE and motion. The motion extents measured from the derived MBK and 4D-CT exhibited an average difference of 1.9 mm. CONCLUSIONS: The proposed joint correction approach can improve the accuracy of PET quantification by simultaneously compensating for the respiratory motion artifacts and PVE in lung/thoracic PET/CT imaging. FAU - Chang, Guoping AU - Chang G AD - Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA. FAU - Chang, Tingting AU - Chang T FAU - Pan, Tinsu AU - Pan T FAU - Clark, John W Jr AU - Clark JW Jr FAU - Mawlawi, Osama R AU - Mawlawi OR LA - eng PT - Journal Article PL - United States TA - Med Phys JT - Medical physics JID - 0425746 SB - IM MH - *Artifacts MH - Carcinoma, Non-Small-Cell Lung/diagnostic imaging/physiopathology MH - Female MH - Humans MH - Image Processing, Computer-Assisted/*methods MH - Lung/diagnostic imaging/physiopathology MH - Lung Neoplasms/diagnostic imaging/physiopathology MH - Male MH - Middle Aged MH - *Movement MH - Phantoms, Imaging MH - Positron-Emission Tomography/*methods MH - Radiography, Thoracic/*methods MH - *Respiration MH - Thorax/diagnostic imaging MH - Tomography, X-Ray Computed/*methods PMC - PMC3820620 EDAT- 2011/02/10 06:00 MHDA- 2011/03/12 06:00 PMCR- 2011/12/01 CRDT- 2011/02/10 06:00 PHST- 2011/02/10 06:00 [entrez] PHST- 2011/02/10 06:00 [pubmed] PHST- 2011/03/12 06:00 [medline] PHST- 2011/12/01 00:00 [pmc-release] AID - 006012MPH [pii] AID - 10.1118/1.3512780 [doi] PST - ppublish SO - Med Phys. 2010 Dec;37(12):6221-32. doi: 10.1118/1.3512780.