PMID- 21461816 OWN - NLM STAT- MEDLINE DCOM- 20110801 LR - 20110404 IS - 1940-6029 (Electronic) IS - 1064-3745 (Linking) VI - 735 DP - 2011 TI - CO-FISH, COD-FISH, ReD-FISH, SKY-FISH. PG - 113-24 LID - 10.1007/978-1-61779-092-8_11 [doi] AB - Fluorescence in situ hybridization (FISH) has become a powerful tool for exploring genomes at the level of chromosomes. The procedure can be used to identify individual chromosomes, rearrangements between chromosomes, and the location within a chromosome of specific DNA sequences such as centromeres, telomeres, and even individual genes. Chromosome orientation FISH (CO-FISH) extends the information obtainable from standard FISH to include the relative orientation of two or more DNA sequences within a chromosome (Goodwin and Meyne, Cytogenet Cell Genet 63:126-127, 1993). In combination with a suitable reference probe, CO-FISH can also determine the absolute 5'-3' direction of a DNA sequence relative to the short arm (pter) to long arm (qter) axis of the chromosome. This variation of CO-FISH was originally termed "COD-FISH" (Chromosome orientation and direction FISH) to reflect this fact (Meyne and Goodwin, Chromosome Research 3:375-378, 1995). Telomeric DNA serves as a convenient and absolute reference probe for this purpose, since all G-rich 5'-(TTAGGG)( n )-3' telomeric sequences are terminally located and oriented away from the centromere.In the beginning, CO-FISH was used to detect obligate chromosomal inversions associated with isochromosome formation (Bailey et al., Mutagenesis 11:139-144, 1996), various pericentric inversions (Bailey et al., Cytogenetics and Cell Genetics 75:248-253, 1996), and to confirm the origin of centromeric lateral asymmetry (Goodwin et al., Chromosoma 104:345-347, 1996). More recent and sophisticated applications of CO-FISH include distinction between telomeres produced via leading- vs. lagging-strand DNA synthesis (Bailey et al., Science 293:2462-2465, 2001), identification of interstitial blocks of telomere sequence that result from inappropriate fusion to double-strand breaks (telomere-DSB fusion) (Bailey et al., DNA Repair (Amst) 3:349-357, 2004), discovery of elevated rates of mitotic recombination at chromosomal termini (Cornforth and Eberle, Mutagenesis, 16:85-89, 2001) and sister chromatid exchange within telomeric DNA (T-SCE) (Bailey et al., Nucleic Acids Res 32:3743-3751, 2004), establishing replication timing of mammalian telomeres throughout S-phase (ReD-FISH) (Cornforth et al., In: Cold Spring Harbor Symposium: Telomeres and Telomerase, Cold Spring Harbor, NY, 2003; Zou et al., Proc Natl Acad Sci USA 101:12928-12933, 2004) and in combination with -spectral karyotyping (SKY-CO-FISH) (Williams et al., Cancer Res 69:2100-2107, 2009). For more information, the reader is referred to several reviews (Bailey et al., Cytogenet Genome Res 107, 14-17, 2004; Bailey and Cornforth, Cell Mol Life Sci 64:2956-2964, 2007; Bailey, Telomeres and Double-Strand Breaks - All's Well that "Ends" Well, Radiat Res 169:1-7, 2008). FAU - Williams, Eli S AU - Williams ES AD - Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA. FAU - Cornforth, Michael N AU - Cornforth MN FAU - Goodwin, Edwin H AU - Goodwin EH FAU - Bailey, Susan M AU - Bailey SM LA - eng PT - Journal Article PL - United States TA - Methods Mol Biol JT - Methods in molecular biology (Clifton, N.J.) JID - 9214969 RN - 9007-49-2 (DNA) SB - IM MH - DNA/genetics MH - DNA Replication MH - Humans MH - In Situ Hybridization, Fluorescence/*methods MH - Physical Chromosome Mapping MH - Repetitive Sequences, Nucleic Acid/genetics MH - Telomere/*genetics/metabolism EDAT- 2011/04/05 06:00 MHDA- 2011/08/02 06:00 CRDT- 2011/04/05 06:00 PHST- 2011/04/05 06:00 [entrez] PHST- 2011/04/05 06:00 [pubmed] PHST- 2011/08/02 06:00 [medline] AID - 10.1007/978-1-61779-092-8_11 [doi] PST - ppublish SO - Methods Mol Biol. 2011;735:113-24. doi: 10.1007/978-1-61779-092-8_11.