PMID- 21533283 OWN - NLM STAT- MEDLINE DCOM- 20110830 LR - 20211020 IS - 1932-6203 (Electronic) IS - 1932-6203 (Linking) VI - 6 IP - 4 DP - 2011 Apr 13 TI - Assessing the influence of different ROI selection strategies on functional connectivity analyses of fMRI data acquired during steady-state conditions. PG - e14788 LID - 10.1371/journal.pone.0014788 [doi] LID - e14788 AB - In blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI), assessing functional connectivity between and within brain networks from datasets acquired during steady-state conditions has become increasingly common. However, in contrast to connectivity analyses based on task-evoked signal changes, selecting the optimal spatial location of the regions of interest (ROIs) whose timecourses will be extracted and used in subsequent analyses is not straightforward. Moreover, it is also unknown how different choices of the precise anatomical locations within given brain regions influence the estimates of functional connectivity under steady-state conditions. The objective of the present study was to assess the variability in estimates of functional connectivity induced by different anatomical choices of ROI locations for a given brain network. We here targeted the default mode network (DMN) sampled during both resting-state and a continuous verbal 2-back working memory task to compare four different methods to extract ROIs in terms of ROI features (spatial overlap, spatial functional heterogeneity), signal features (signal distribution, mean, variance, correlation) as well as strength of functional connectivity as a function of condition. We show that, while different ROI selection methods produced quantitatively different results, all tested ROI selection methods agreed on the final conclusion that functional connectivity within the DMN decreased during the continuous working memory task compared to rest. FAU - Marrelec, Guillaume AU - Marrelec G AD - U678, Inserm, Paris, France. marrelec@imed.jussieu.fr FAU - Fransson, Peter AU - Fransson P LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't DEP - 20110413 PL - United States TA - PLoS One JT - PloS one JID - 101285081 SB - IM MH - Adult MH - Brain/*physiology MH - Female MH - Humans MH - Image Processing, Computer-Assisted MH - Magnetic Resonance Imaging/*methods MH - Male MH - Probability PMC - PMC3076321 COIS- Competing Interests: The authors have declared that no competing interests exist. EDAT- 2011/05/03 06:00 MHDA- 2011/08/31 06:00 PMCR- 2011/04/13 CRDT- 2011/05/03 06:00 PHST- 2010/03/15 00:00 [received] PHST- 2011/01/10 00:00 [accepted] PHST- 2011/05/03 06:00 [entrez] PHST- 2011/05/03 06:00 [pubmed] PHST- 2011/08/31 06:00 [medline] PHST- 2011/04/13 00:00 [pmc-release] AID - 10-PONE-RA-17142R2 [pii] AID - 10.1371/journal.pone.0014788 [doi] PST - epublish SO - PLoS One. 2011 Apr 13;6(4):e14788. doi: 10.1371/journal.pone.0014788.