PMID- 21615676 OWN - NLM STAT- MEDLINE DCOM- 20120109 LR - 20211203 IS - 1474-9726 (Electronic) IS - 1474-9718 (Linking) VI - 10 IP - 5 DP - 2011 Oct TI - Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. PG - 908-11 LID - 10.1111/j.1474-9726.2011.00722.x [doi] AB - Reprogramming of somatic cells to a pluripotent state was first accomplished using retroviral vectors for transient expression of pluripotency-associated transcription factors. This seminal work was followed by numerous studies reporting alternative (noninsertional) reprogramming methods and various conditions to improve the efficiency of reprogramming. These studies have contributed little to an understanding of global mechanisms underlying reprogramming efficiency. Here we report that inhibition of the mammalian target of rapamycin (mTOR) pathway by rapamycin or PP242 enhances the efficiency of reprogramming to induced pluripotent stem cells (iPSCs). Inhibition of the insulin/IGF-1 signaling pathway, which like mTOR is involved in control of longevity, also enhances reprogramming efficiency. In addition, the small molecules used to inhibit these pathways also significantly improved longevity in Drosophila melanogaster. We further tested the potential effects of six other longevity-promoting compounds on iPSC induction, including two sirtuin activators (resveratrol and fisetin), an autophagy inducer (spermidine), a PI3K (phosphoinositide 3-kinase) inhibitor (LY294002), an antioxidant (curcumin), and an activating adenosine monophosphate-activated protein kinase activator (metformin). With the exception of metformin, all of these chemicals promoted somatic cell reprogramming, though to different extents. Our results show that the controllers of somatic cell reprogramming and organismal lifespan share some common regulatory pathways, which suggests a new approach for studying aging and longevity based on the regulation of cellular reprogramming. CI - (c) 2011 The Authors. Aging Cell (c) 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland. FAU - Chen, Taotao AU - Chen T AD - Laboratory of Molecular Cell Biology and Center of Cell Signaling, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, China. FAU - Shen, Li AU - Shen L FAU - Yu, Jie AU - Yu J FAU - Wan, Hongjiang AU - Wan H FAU - Guo, Ao AU - Guo A FAU - Chen, Jiekai AU - Chen J FAU - Long, Yuan AU - Long Y FAU - Zhao, Jian AU - Zhao J FAU - Pei, Gang AU - Pei G LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't DEP - 20110614 PL - England TA - Aging Cell JT - Aging cell JID - 101130839 RN - 0 (Chromones) RN - 0 (Flavonoids) RN - 0 (Flavonols) RN - 0 (Morpholines) RN - 0 (Phosphoinositide-3 Kinase Inhibitors) RN - 31M2U1DVID (2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one) RN - EC 2.7.1.1 (mTOR protein, mouse) RN - EC 2.7.11.1 (TOR Serine-Threonine Kinases) RN - OO2ABO9578 (fisetin) RN - U87FK77H25 (Spermidine) RN - W36ZG6FT64 (Sirolimus) SB - IM MH - Aging MH - Animals MH - Cellular Reprogramming MH - Chromones/pharmacology MH - Flavonoids/pharmacology MH - Flavonols MH - Induced Pluripotent Stem Cells/*drug effects MH - *Longevity MH - Mice MH - Morpholines/pharmacology MH - Phosphoinositide-3 Kinase Inhibitors MH - Signal Transduction MH - Sirolimus/*pharmacology MH - Spermidine/pharmacology MH - TOR Serine-Threonine Kinases/metabolism EDAT- 2011/05/28 06:00 MHDA- 2012/01/10 06:00 CRDT- 2011/05/28 06:00 PHST- 2011/05/28 06:00 [entrez] PHST- 2011/05/28 06:00 [pubmed] PHST- 2012/01/10 06:00 [medline] AID - 10.1111/j.1474-9726.2011.00722.x [doi] PST - ppublish SO - Aging Cell. 2011 Oct;10(5):908-11. doi: 10.1111/j.1474-9726.2011.00722.x. Epub 2011 Jun 14.