PMID- 21780252 OWN - NLM STAT- MEDLINE DCOM- 20120216 LR - 20220223 IS - 1549-4918 (Electronic) IS - 1066-5099 (Linking) VI - 29 IP - 9 DP - 2011 Sep TI - The mitochondrial electron transport chain is dispensable for proliferation and differentiation of epidermal progenitor cells. PG - 1459-68 LID - 10.1002/stem.695 [doi] AB - Tissue stem cells and germ line or embryonic stem cells were shown to have reduced oxidative metabolism, which was proposed to be an adaptive mechanism to reduce damage accumulation caused by reactive oxygen species. However, an alternate explanation is that stem cells are less dependent on specialized cytoplasmic functions compared with differentiated cells, therefore, having a high nuclear-to-cytoplasmic volume ratio and consequently a low mitochondrial content. To determine whether stem cells rely or not on mitochondrial respiration, we selectively ablated the electron transport chain in the basal layer of the epidermis, which includes the epidermal progenitor/stem cells (EPSCs). This was achieved using a loxP-flanked mitochondrial transcription factor A (Tfam) allele in conjunction with a keratin 14 Cre transgene. The epidermis of these animals (Tfam(EKO)) showed a profound depletion of mitochondrial DNA and complete absence of respiratory chain complexes. However, despite a short lifespan due to malnutrition, epidermal development and skin barrier function were not impaired. Differentiation of epidermal layers was normal and no proliferation defect or major increase of apoptosis could be observed. In contrast, mice with an epidermal ablation of prohibitin-2, a scaffold protein in the inner mitochondrial membrane, displayed a dramatic phenotype observable already in utero, with severely impaired skin architecture and barrier function, ultimately causing death from dehydration shortly after birth. In conclusion, we here provide unequivocal evidence that EPSCs, and probably tissue stem cells in general, are independent of the mitochondrial respiratory chain, but still require a functional dynamic mitochondrial compartment. CI - Copyright (c) 2011 AlphaMed Press. FAU - Baris, Olivier R AU - Baris OR AD - Center for Physiology and Pathophysiology, Institute for Vegetative Physiology,University of Cologne, Cologne, Germany. FAU - Klose, Anke AU - Klose A FAU - Kloepper, Jennifer E AU - Kloepper JE FAU - Weiland, Daniela AU - Weiland D FAU - Neuhaus, Johannes F G AU - Neuhaus JF FAU - Schauen, Matthias AU - Schauen M FAU - Wille, Anna AU - Wille A FAU - Muller, Alexander AU - Muller A FAU - Merkwirth, Carsten AU - Merkwirth C FAU - Langer, Thomas AU - Langer T FAU - Larsson, Nils-Goran AU - Larsson NG FAU - Krieg, Thomas AU - Krieg T FAU - Tobin, Desmond J AU - Tobin DJ FAU - Paus, Ralf AU - Paus R FAU - Wiesner, Rudolf J AU - Wiesner RJ LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't PL - England TA - Stem Cells JT - Stem cells (Dayton, Ohio) JID - 9304532 RN - 0 (DNA-Binding Proteins) RN - 0 (High Mobility Group Proteins) RN - 0 (Reactive Oxygen Species) RN - 0 (Tfam protein, mouse) SB - IM MH - Animals MH - Apoptosis/physiology MH - Cell Differentiation/physiology MH - Cell Growth Processes/physiology MH - DNA-Binding Proteins/deficiency/genetics/metabolism MH - Electron Transport MH - *Epidermal Cells MH - Epidermis/metabolism MH - Genotype MH - High Mobility Group Proteins/deficiency/genetics/metabolism MH - Immunohistochemistry MH - Mice MH - Mice, Knockout MH - Mitochondria/genetics/*metabolism MH - Reactive Oxygen Species/metabolism MH - Stem Cells/*cytology/*metabolism EDAT- 2011/07/23 06:00 MHDA- 2012/02/18 06:00 CRDT- 2011/07/23 06:00 PHST- 2011/07/23 06:00 [entrez] PHST- 2011/07/23 06:00 [pubmed] PHST- 2012/02/18 06:00 [medline] AID - 10.1002/stem.695 [doi] PST - ppublish SO - Stem Cells. 2011 Sep;29(9):1459-68. doi: 10.1002/stem.695.