PMID- 21820301 OWN - NLM STAT- MEDLINE DCOM- 20121102 LR - 20220410 IS - 1873-4847 (Electronic) IS - 0955-2863 (Linking) VI - 23 IP - 7 DP - 2012 Jul TI - Enhanced autophagy plays a cardinal role in mitochondrial dysfunction in type 2 diabetic Goto-Kakizaki (GK) rats: ameliorating effects of (-)-epigallocatechin-3-gallate. PG - 716-24 LID - 10.1016/j.jnutbio.2011.03.014 [doi] AB - Oxidative stress and mitochondrial dysfunction are known to play important roles in type 2 diabetes mellitus (T2DM) and insulin resistance. However, the pathology of T2DM remains complicated; in particular, the mechanisms of mitochondrial dysfunction in skeletal muscle and other insulin-sensitive tissues are as yet unclear. In the present study, we investigated the underlying mechanisms of oxidative stress and mitochondrial dysfunction by focusing on mitochondrial dynamics, including mitochondrial biogenesis and autophagy, in skeletal muscle of a nonobese diabetic animal model--the Goto-Kakizaki (GK) rat. The results showed that GK rats exhibited impaired glucose metabolism, increased oxidative stress and decreased mitochondrial function. These dysfunctions were found to be associated with induction of LC3B, Beclin1 and DRP1 (key molecules mediating the autophagy pathway), while they appeared not to affect the mitochondrial biogenesis pathway. In addition, (-)-epigallocatechin-3-gallate (EGCG) was tested as a potential autophagy-targeting nutrient, and we found that EGCG treatment improved glucose tolerance and glucose homeostasis in GK rats, and reduced oxidative stress and mitochondrial dysfunction in skeletal muscle. Amelioration of excessive muscle autophagy in GK rats through the down-regulation of the ROS-ERK/JNK-p53 pathway leads to improvement of glucose metabolism, reduction of oxidative stress and inhibition of mitochondrial loss and dysfunction. These results suggest (a) that hyperglycemia-associated oxidative stress may induce autophagy through up-regulation of the ROS-ERK/JNK-p53 pathway, which may contribute to mitochondrial loss in soleus muscle of diabetic GK rats, and (b) that EGCG may be a potential autophagy regulator useful in treatment of insulin resistance. CI - Copyright (c) 2012 Elsevier Inc. All rights reserved. FAU - Yan, Jiong AU - Yan J AD - Department of Biology and Engineering, Institute of Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, Xi'an 710049, China. FAU - Feng, Zhihui AU - Feng Z FAU - Liu, Jia AU - Liu J FAU - Shen, Weili AU - Shen W FAU - Wang, Ying AU - Wang Y FAU - Wertz, Karin AU - Wertz K FAU - Weber, Peter AU - Weber P FAU - Long, Jiangang AU - Long J FAU - Liu, Jiankang AU - Liu J LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't DEP - 20110804 PL - United States TA - J Nutr Biochem JT - The Journal of nutritional biochemistry JID - 9010081 RN - 0 (Blood Glucose) RN - 0 (Hypoglycemic Agents) RN - 0 (Tumor Suppressor Protein p53) RN - 8R1V1STN48 (Catechin) RN - BQM438CTEL (epigallocatechin gallate) RN - EC 2.7.11.24 (Mitogen-Activated Protein Kinases) SB - IM MH - Animals MH - Autophagy/*drug effects MH - Blood Glucose MH - Catechin/*analogs & derivatives/pharmacology MH - Diabetes Mellitus, Type 2/drug therapy/metabolism/*physiopathology MH - Down-Regulation MH - Fasting MH - Hypoglycemic Agents/*pharmacology MH - Insulin Resistance MH - Male MH - Mitochondria/*drug effects/metabolism MH - Mitogen-Activated Protein Kinases/genetics/metabolism MH - Muscle, Skeletal/drug effects/metabolism/physiopathology MH - Oxidative Stress/*drug effects MH - Rats MH - Tumor Suppressor Protein p53/genetics/metabolism MH - Up-Regulation EDAT- 2011/08/09 06:00 MHDA- 2012/11/03 06:00 CRDT- 2011/08/09 06:00 PHST- 2010/10/02 00:00 [received] PHST- 2011/03/15 00:00 [revised] PHST- 2011/03/17 00:00 [accepted] PHST- 2011/08/09 06:00 [entrez] PHST- 2011/08/09 06:00 [pubmed] PHST- 2012/11/03 06:00 [medline] AID - S0955-2863(11)00111-2 [pii] AID - 10.1016/j.jnutbio.2011.03.014 [doi] PST - ppublish SO - J Nutr Biochem. 2012 Jul;23(7):716-24. doi: 10.1016/j.jnutbio.2011.03.014. Epub 2011 Aug 4.