PMID- 21845039 OWN - NLM STAT- MEDLINE DCOM- 20111207 LR - 20211020 IS - 1178-2013 (Electronic) IS - 1176-9114 (Print) IS - 1176-9114 (Linking) VI - 6 DP - 2011 TI - Nickel nanowires induced and reactive oxygen species mediated apoptosis in human pancreatic adenocarcinoma cells. PG - 1475-85 LID - 10.2147/IJN.S21697 [doi] AB - BACKGROUND: The ability to evade apoptosis is one of the key properties of cancer. The apoptogenic effect of nickel nanowires (Ni NWs) on cancer cell lines has never been adequately addressed. Due to the unique physicochemical characteristics of Ni NWs, we envision the development of a novel anticancer therapeutics specifically for pancreatic cancer. Thus, we investigated whether Ni NWs induce ROS-mediated apoptosis in human pancreatic adenocarcinoma (Panc-1) cells. METHODS: In this study Ni NWs were fabricated using the electrodeposition method. Synthesized Ni NWs were physically characterized by energy dispersive X-ray analysis, UV-Vis spectroscopy of NanoDrop 2000 (UV-Vis), magnetization study, scanning electron microscopy, and transmission electron microscopy. Assessment of morphological apoptotic characteristics by phase contrast microscopy (PCM), Ni-NWs-induced apoptosis staining with ethidium bromide (EB) and acridine orange (AO) followed by fluorescence microscopy (FM) was performed. For molecular biological and biochemical characterization, Panc-1 cell culture and cytotoxic effect of Ni NWs were determined by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Quantitative apoptosis was analyzed by flow cytometry staining with propidium iodide through cell cycle arrest and generation of ROS using 2', 7'-dichlorofluorescein diacetate fluorescence intensity. In all experiments, Panc-1 cancer cells without any treatment were used as the negative controls. RESULTS: The intracellular uptake of Ni NWs through endocytosis by Panc-1 cells was observed by PCM. EB and AO staining of FM and MTT assay qualitatively and quantitatively confirmed the extent of apoptosis. Flow cytometric cell cycle arrest and ROS generation indicated Ni NWs as inducers of apoptotic cell death. CONCLUSION: We investigated the role of Ni NWs as inducers of ROS-mediated apoptosis in Panc-1 cells. These results suggested that Ni NWs could be an effective apoptotic agent for Panc-1 cells and have good potential for further research into a clinical treatment selective for pancreatic cancer. FAU - Hossain, Md Zakir AU - Hossain MZ AD - Applied Biosciences-Bionanotechnology Research, Department of Applied Science, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, USA. mxhossain1@ualr.edu FAU - Kleve, Maurice G AU - Kleve MG LA - eng PT - Journal Article DEP - 20110713 PL - New Zealand TA - Int J Nanomedicine JT - International journal of nanomedicine JID - 101263847 RN - 0 (Fluorescent Dyes) RN - 0 (Reactive Oxygen Species) RN - 0 (Tetrazolium Salts) RN - 0 (Thiazoles) RN - 7OV03QG267 (Nickel) RN - EUY85H477I (thiazolyl blue) SB - IM MH - Adenocarcinoma/*drug therapy/metabolism/pathology MH - Analysis of Variance MH - Apoptosis/*drug effects MH - Cell Cycle Checkpoints/drug effects MH - Cell Line, Tumor MH - Cell Proliferation/drug effects MH - Flow Cytometry MH - Fluorescent Dyes MH - Humans MH - Microscopy, Phase-Contrast MH - Nanotechnology MH - Nanowires/*chemistry MH - Nickel/chemistry/pharmacokinetics/*pharmacology MH - Pancreatic Neoplasms/*drug therapy/metabolism/pathology MH - Particle Size MH - Reactive Oxygen Species/*metabolism MH - Tetrazolium Salts MH - Thiazoles PMC - PMC3152467 OTO - NOTNLM OT - MTT assay OT - Ni NWs OT - Panc-1 OT - ROS OT - apoptosis OT - cell cycle arrest OT - flow cytometry EDAT- 2011/08/17 06:00 MHDA- 2011/12/13 00:00 PMCR- 2011/07/13 CRDT- 2011/08/17 06:00 PHST- 2011/08/17 06:00 [entrez] PHST- 2011/08/17 06:00 [pubmed] PHST- 2011/12/13 00:00 [medline] PHST- 2011/07/13 00:00 [pmc-release] AID - ijn-6-1475 [pii] AID - 10.2147/IJN.S21697 [doi] PST - ppublish SO - Int J Nanomedicine. 2011;6:1475-85. doi: 10.2147/IJN.S21697. Epub 2011 Jul 13.