PMID- 22154871 OWN - NLM STAT- MEDLINE DCOM- 20120518 LR - 20131121 IS - 1873-3336 (Electronic) IS - 0304-3894 (Linking) VI - 201-202 DP - 2012 Jan 30 TI - Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli. PG - 178-84 LID - 10.1016/j.jhazmat.2011.11.067 [doi] AB - Arsenic is a highly toxic metalloid and has posed high risk to the environment. As(III) is highly mobile in soil and leached easily into groundwater. The current remediation techniques are not sufficient to immobilize this toxic element. In the present study, an As(III) tolerant bacterium Sporosarcina ginsengisoli CR5 was isolated from As contaminated soil of Urumqi, China. We investigated the role of microbial calcite precipitated by this bacterium to remediate soil contaminated with As(III). The bacterium was able to grow at high As(III) concentration of 50mM. In order to obtain arsenic distribution pattern, five stage soil sequential extraction was carried out. Arsenic mobility was found to significantly decrease in the exchangeable fraction of soil and subsequently the arsenic concentration was markedly increased in carbonated fraction after bioremediation. Microbially induced calcite precipitation (MICP) process in bioremediation was further confirmed by ATR-FTIR and XRD analyses. XRD spectra showed presence of various biomineralization products such as calcite, gwihabaite, aragonite and vaterite in bioremediated soil samples. The results from this study have implications that MICP based bioremediation by S. ginsengisoli is a viable, environmental friendly technology for remediation of the arsenic contaminated sites. CI - Copyright (c) 2011 Elsevier B.V. All rights reserved. FAU - Achal, Varenyam AU - Achal V AD - Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China. FAU - Pan, Xiangliang AU - Pan X FAU - Fu, Qinglong AU - Fu Q FAU - Zhang, Daoyong AU - Zhang D LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't DEP - 20111128 PL - Netherlands TA - J Hazard Mater JT - Journal of hazardous materials JID - 9422688 RN - 0 (Arsenicals) RN - 0 (Soil Pollutants) RN - H0G9379FGK (Calcium Carbonate) SB - IM MH - Arsenicals/chemistry/*isolation & purification MH - Biodegradation, Environmental MH - Calcium Carbonate/chemistry MH - Chemical Precipitation MH - China MH - *Soil Microbiology MH - Soil Pollutants/chemistry/*isolation & purification MH - Sporosarcina/*growth & development EDAT- 2011/12/14 06:00 MHDA- 2012/05/19 06:00 CRDT- 2011/12/14 06:00 PHST- 2011/04/20 00:00 [received] PHST- 2011/11/11 00:00 [revised] PHST- 2011/11/18 00:00 [accepted] PHST- 2011/12/14 06:00 [entrez] PHST- 2011/12/14 06:00 [pubmed] PHST- 2012/05/19 06:00 [medline] AID - S0304-3894(11)01447-6 [pii] AID - 10.1016/j.jhazmat.2011.11.067 [doi] PST - ppublish SO - J Hazard Mater. 2012 Jan 30;201-202:178-84. doi: 10.1016/j.jhazmat.2011.11.067. Epub 2011 Nov 28.