PMID- 22410420 OWN - NLM STAT- MEDLINE DCOM- 20120703 LR - 20231004 IS - 1420-3049 (Electronic) IS - 1420-3049 (Linking) VI - 17 IP - 3 DP - 2012 Mar 12 TI - Use of spectroscopic, zeta potential and molecular dynamic techniques to study the interaction between human holo-transferrin and two antagonist drugs: comparison of binary and ternary systems. PG - 3114-47 LID - 10.3390/molecules17033114 [doi] AB - For the first time, the binding of ropinirole hydrochloride (ROP) and aspirin (ASA) to human holo-transferrin (hTf) has been investigated by spectroscopic approaches (fluorescence quenching, synchronous fluorescence, time-resolved fluorescence, three-dimensional fluorescence, UV-vis absorption, circular dichroism, resonance light scattering), as well as zeta potential and molecular modeling techniques, under simulated physiological conditions. Fluorescence analysis was used to estimate the effect of the ROP and ASA drugs on the fluorescence of hTf as well as to define the binding and quenching properties of binary and ternary complexes. The synchronized fluorescence and three-dimensional fluorescence spectra demonstrated some micro-environmental and conformational changes around the Trp and Tyr residues with a faint red shift. Thermodynamic analysis displayed the van der Waals forces and hydrogen bonds interactions are the major acting forces in stabilizing the complexes. Steady-state and time-resolved fluorescence data revealed that the fluorescence quenching of complexes are static mechanism. The effect of the drugs aggregating on the hTf resulted in an enhancement of the resonance light scattering (RLS) intensity. The average binding distance between were computed according to the forster non-radiation energy transfer theory. The circular dichroism (CD) spectral examinations indicated that the binding of the drugs induced a conformational change of hTf. Measurements of the zeta potential indicated that the combination of electrostatic and hydrophobic interactions between ROP, ASA and hTf formed micelle-like clusters. The molecular modeling confirmed the experimental results. This study is expected to provide important insight into the interaction of hTf with ROP and ASA to use in various toxicological and therapeutic processes. FAU - Kabiri, Mona AU - Kabiri M AD - Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad 9175687119, Iran. FAU - Amiri-Tehranizadeh, Zeinab AU - Amiri-Tehranizadeh Z FAU - Baratian, Ali AU - Baratian A FAU - Saberi, Mohammad Reza AU - Saberi MR FAU - Chamani, Jamshidkhan AU - Chamani J LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't DEP - 20120312 PL - Switzerland TA - Molecules JT - Molecules (Basel, Switzerland) JID - 100964009 RN - 0 (Indoles) RN - 0 (Transferrin) RN - 030PYR8953 (ropinirole) RN - R16CO5Y76E (Aspirin) SB - IM MH - Algorithms MH - Aspirin/*chemistry MH - Binding Sites MH - Circular Dichroism MH - Fluorescence Resonance Energy Transfer MH - Humans MH - Hydrogen Bonding MH - Hydrophobic and Hydrophilic Interactions MH - Indoles/*chemistry MH - Light MH - *Molecular Dynamics Simulation MH - Protein Binding MH - Protein Structure, Secondary MH - Scattering, Radiation MH - Spectrometry, Fluorescence MH - Thermodynamics MH - Transferrin/antagonists & inhibitors/*chemistry PMC - PMC6268275 EDAT- 2012/03/14 06:00 MHDA- 2012/07/04 06:00 PMCR- 2012/03/12 CRDT- 2012/03/14 06:00 PHST- 2011/12/01 00:00 [received] PHST- 2012/02/24 00:00 [revised] PHST- 2012/02/28 00:00 [accepted] PHST- 2012/03/14 06:00 [entrez] PHST- 2012/03/14 06:00 [pubmed] PHST- 2012/07/04 06:00 [medline] PHST- 2012/03/12 00:00 [pmc-release] AID - molecules17033114 [pii] AID - molecules-17-03114 [pii] AID - 10.3390/molecules17033114 [doi] PST - epublish SO - Molecules. 2012 Mar 12;17(3):3114-47. doi: 10.3390/molecules17033114.