PMID- 23221481 OWN - NLM STAT- MEDLINE DCOM- 20130610 LR - 20190212 IS - 1421-9778 (Electronic) IS - 1015-8987 (Linking) VI - 30 IP - 4 DP - 2012 TI - Differential response of MC3T3-E1 and human mesenchymal stem cells to inositol hexakisphosphate. PG - 974-86 LID - 10.1159/000341474 [doi] AB - BACKGROUND: Inositol hexakisphosphate (IP6) has been found to have an important role in biomineralization. METHODS: Because the complete mechanism of action of IP6 on osteoblasts is not fully understood and its potential use in the primary prevention of osteoporosis, we examined the direct effect of IP6 on cell viability and differentiation of MC3T3-E1 cells and on differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs). RESULTS: We show that IP6 has different effects depending on the origin of the cell target. Thus, while IP6 decreased gene expression of osteoblast markers and mineralization in MC3T3-E1 cells without negatively affecting cell viability and ALP activity, an increase in gene expression of ALP was observed in hUC-MSCs committed to the osteoblastic lineage. This increasing effect of IP6 on ALP mRNA expression levels was reversed by the addition of a selective inhibitor of IP6 kinase, suggesting that the effect of IP6 might be due through its pyrophosphorylated derivatives. Besides, Rankl mRNA levels were decreased after IP6 treatment in MC3T3-E1 cells, pointing to a paracrine effect on osteoclasts. CONCLUSION: Our results indicate that IP6 has different effects on osteoblast differentiation depending on the cell type and origin. However, further studies are needed to examine the net effect of IP6 on bone formation and its potential as novel antiosteoporosis drug. CI - Copyright (c) 2012 S. Karger AG, Basel. FAU - Arriero, Maria Del Mar AU - Arriero Mdel M AD - Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of Balearic Islands, Palma de Mallorca, Spain. FAU - Ramis, Joana M AU - Ramis JM FAU - Perello, Joan AU - Perello J FAU - Monjo, Marta AU - Monjo M LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't DEP - 20120920 PL - Germany TA - Cell Physiol Biochem JT - Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology JID - 9113221 RN - 0 (RANK Ligand) RN - 0 (RNA, Messenger) RN - 7IGF0S7R8I (Phytic Acid) RN - EC 3.1.3.1 (Alkaline Phosphatase) SB - IM MH - 3T3 Cells MH - Alkaline Phosphatase/genetics/metabolism MH - Animals MH - Cell Differentiation MH - Cell Survival MH - Gene Expression Regulation, Developmental MH - Humans MH - Mesenchymal Stem Cells/cytology/*metabolism MH - Mice MH - Osteoblasts/cytology/*metabolism MH - Phytic Acid/*metabolism MH - RANK Ligand/genetics MH - RNA, Messenger/genetics EDAT- 2012/12/12 06:00 MHDA- 2013/06/12 06:00 CRDT- 2012/12/11 06:00 PHST- 2012/08/29 00:00 [accepted] PHST- 2012/12/11 06:00 [entrez] PHST- 2012/12/12 06:00 [pubmed] PHST- 2013/06/12 06:00 [medline] AID - 000341474 [pii] AID - 10.1159/000341474 [doi] PST - ppublish SO - Cell Physiol Biochem. 2012;30(4):974-86. doi: 10.1159/000341474. Epub 2012 Sep 20.