PMID- 23237939 OWN - NLM STAT- MEDLINE DCOM- 20130617 LR - 20131121 IS - 1568-7856 (Electronic) IS - 1568-7856 (Linking) VI - 12 IP - 1 DP - 2013 Jan 1 TI - Inhibition of homologous recombination by hyperthermia shunts early double strand break repair to non-homologous end-joining. PG - 38-45 LID - S1568-7864(12)00264-9 [pii] LID - 10.1016/j.dnarep.2012.10.008 [doi] AB - In S and G2 phase mammalian cells DNA double strand breaks (DSBs) can potentially be repaired by homologous recombination (HR) or non-homologous end-joining (NHEJ). Results of several studies suggest that these two mechanistically distinct repair pathways can compete for DNA ends. Because HR and NHEJ differ with respect to error susceptibility, generation of chromosome rearrangements, which are potentially carcinogenic products of DSB repair, may depend on the pathway choice. To investigate this hypothesis, the influence of HR and NHEJ inhibition on the frequencies of chromosome aberrations in G2 phase cells was investigated. SW-1573 and RKO cells were treated with mild (41 degrees C) hyperthermia in order to disable HR and/or NU7441/cisplatin to inactivate NHEJ and frequencies of chromosomal fragments (resulting from unrepaired DSBs) and translocations (products of erroneous DSB rejoining) were studied using premature chromosome condensation (PCC) combined with fluorescence in situ hybridization (FISH). It is shown here that temporary inhibition of HR by hyperthermia results in increased frequency of ionizing-radiation (IR)-induced chromosomal translocations and that this effect is abrogated by NU7441- or cisplatin-mediated inhibition of NHEJ. The results suggest that in the absence of HR, DSB repair is shifted to the error-prone NHEJ pathway resulting in increased frequencies of chromosomal rearrangements. These results might be of consequence for clinical cancer treatment approaches that aim at inhibition of one or more DSB repair pathways. CI - Copyright (c) 2012 Elsevier B.V. All rights reserved. FAU - Bergs, Judith W J AU - Bergs JW AD - Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine, Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands. FAU - Krawczyk, Przemek M AU - Krawczyk PM FAU - Borovski, Tijana AU - Borovski T FAU - ten Cate, Rosemarie AU - ten Cate R FAU - Rodermond, Hans M AU - Rodermond HM FAU - Stap, Jan AU - Stap J FAU - Medema, Jan Paul AU - Medema JP FAU - Haveman, Jaap AU - Haveman J FAU - Essers, Jeroen AU - Essers J FAU - van Bree, Chris AU - van Bree C FAU - Stalpers, Lukas J A AU - Stalpers LJ FAU - Kanaar, Roland AU - Kanaar R FAU - Aten, Jacob A AU - Aten JA FAU - Franken, Nicolaas A P AU - Franken NA LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't DEP - 20121211 PL - Netherlands TA - DNA Repair (Amst) JT - DNA repair JID - 101139138 RN - 0 (8-dibenzothiophen-4-yl-2-morpholin-4-yl-chromen-4-one) RN - 0 (Chromones) RN - 0 (Morpholines) RN - Q20Q21Q62J (Cisplatin) SB - IM MH - Animals MH - Cell Line, Tumor MH - Chromones MH - Cisplatin/toxicity MH - DNA Breaks, Double-Stranded MH - *DNA End-Joining Repair MH - G2 Phase MH - Gamma Rays MH - *Homologous Recombination MH - *Hot Temperature MH - Humans MH - Mice MH - Morpholines MH - Radiation Tolerance MH - *Recombinational DNA Repair MH - Translocation, Genetic/drug effects/radiation effects EDAT- 2012/12/15 06:00 MHDA- 2013/06/19 06:00 CRDT- 2012/12/15 06:00 PHST- 2011/11/10 00:00 [received] PHST- 2012/10/11 00:00 [revised] PHST- 2012/10/12 00:00 [accepted] PHST- 2012/12/15 06:00 [entrez] PHST- 2012/12/15 06:00 [pubmed] PHST- 2013/06/19 06:00 [medline] AID - S1568-7864(12)00264-9 [pii] AID - 10.1016/j.dnarep.2012.10.008 [doi] PST - ppublish SO - DNA Repair (Amst). 2013 Jan 1;12(1):38-45. doi: 10.1016/j.dnarep.2012.10.008. Epub 2012 Dec 11.