PMID- 23305991 OWN - NLM STAT- MEDLINE DCOM- 20131021 LR - 20130416 IS - 1873-2402 (Electronic) IS - 0006-3223 (Linking) VI - 73 IP - 9 DP - 2013 May 1 TI - Presynaptic leptin action suppresses excitatory synaptic transmission onto ventral tegmental area dopamine neurons. PG - 860-8 LID - S0006-3223(12)00953-5 [pii] LID - 10.1016/j.biopsych.2012.10.026 [doi] AB - BACKGROUND: Leptin is an adipocyte-derived cytokine that can act in the brain to suppress feeding and maintain energy homeostasis. Additionally, leptin activates its receptors in the ventral tegmental area (VTA), a critical site for neuroadaptations to rewarding stimuli, to modulate reward-seeking behaviors. Although leptin can decrease intrinsic excitability of dopamine neurons in the VTA, it is unknown whether leptin can modulate excitatory synaptic transmission in this brain region. Because plasticity of glutamatergic synapses onto VTA neurons can encode predictive information about reward, we hypothesized that leptin can decrease excitatory synaptic transmission onto dopamine neurons. METHODS: Using whole-cell patch clamp electrophysiology in mouse midbrain slices, we tested the effects of leptin on evoked alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) or N-methyl-D-aspartate receptor (NMDAR)-mediated excitatory postsynaptic currents (EPSCs) onto VTA dopamine neurons. RESULTS: Leptin depressed both AMPAR and NMDAR EPSCs in VTA dopamine neurons and reduced frequency but not amplitude of mini EPSCs. Bath application of the MEK1/2 inhibitor U0126 did not alter leptin-induced suppression of AMPAR EPSCs. However, external, but not internal, application of the phosphoinositol 3-kinase (PI3K) or Janus kinase 2 (Jak2) tyrosine kinase inhibitors abolished leptin-induced synaptic depression. CONCLUSIONS: This study demonstrates that leptin causes a presynaptic inhibition of the probability of glutamate release onto VTA dopamine neurons. This synaptic inhibition requires Jak2 and PI3K activation. Leptin-induced weakening of synaptic strength onto dopamine cells may underlie its inhibitory effects on appetitive behavior for rewarding stimuli. CI - Copyright (c) 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved. FAU - Thompson, Jennifer L AU - Thompson JL AD - Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada. FAU - Borgland, Stephanie L AU - Borgland SL LA - eng GR - Canadian Institutes of Health Research/Canada PT - Journal Article PT - Research Support, Non-U.S. Gov't DEP - 20130107 PL - United States TA - Biol Psychiatry JT - Biological psychiatry JID - 0213264 RN - 0 (Butadienes) RN - 0 (Enzyme Inhibitors) RN - 0 (Leptin) RN - 0 (Nitriles) RN - 0 (Receptors, AMPA) RN - 0 (Receptors, N-Methyl-D-Aspartate) RN - 0 (U 0126) SB - IM MH - Animals MH - Butadienes/pharmacology MH - Dopaminergic Neurons/cytology/*drug effects/metabolism MH - Enzyme Inhibitors/pharmacology MH - Excitatory Postsynaptic Potentials/*drug effects/physiology MH - Leptin/*pharmacology MH - Male MH - Mice MH - Nitriles/pharmacology MH - Patch-Clamp Techniques MH - Receptors, AMPA/metabolism MH - Receptors, N-Methyl-D-Aspartate/metabolism MH - Signal Transduction/drug effects MH - Synaptic Transmission/drug effects/physiology MH - Ventral Tegmental Area/cytology/*drug effects/metabolism EDAT- 2013/01/12 06:00 MHDA- 2013/10/22 06:00 CRDT- 2013/01/12 06:00 PHST- 2012/07/14 00:00 [received] PHST- 2012/10/31 00:00 [revised] PHST- 2012/10/31 00:00 [accepted] PHST- 2013/01/12 06:00 [entrez] PHST- 2013/01/12 06:00 [pubmed] PHST- 2013/10/22 06:00 [medline] AID - S0006-3223(12)00953-5 [pii] AID - 10.1016/j.biopsych.2012.10.026 [doi] PST - ppublish SO - Biol Psychiatry. 2013 May 1;73(9):860-8. doi: 10.1016/j.biopsych.2012.10.026. Epub 2013 Jan 7.