PMID- 23688850 OWN - NLM STAT- MEDLINE DCOM- 20140424 LR - 20171116 IS - 1567-7257 (Electronic) IS - 1567-1348 (Linking) VI - 18 DP - 2013 Aug TI - Relation between HLA genes, human skin volatiles and attractiveness of humans to malaria mosquitoes. PG - 87-93 LID - S1567-1348(13)00198-6 [pii] LID - 10.1016/j.meegid.2013.05.009 [doi] AB - Chemical cues are considered to be the most important cues for mosquitoes to find their hosts and humans can be ranked for attractiveness to mosquitoes based on the chemical cues they emit. Human leukocyte antigen (HLA) genes are considered to be involved in the regulation of human body odor and may therefore affect human attractiveness to mosquitoes, and hence, affect the force of malaria transmission. In the present study the correlations between HLA profiles, human skin volatiles and human attractiveness to the malaria mosquito Anopheles gambiae Giles sensu stricto were examined. Skin emanations of 48 volunteers were collected by rubbing a foot over glass beads. Previously the attractiveness of these emanations to An. gambiae was determined. In this study, the chemical composition of these emanations was determined by gas chromatography-mass spectroscopy (GC-MS) and blood samples of all volunteers were taken for HLA analysis. Hierarchical cluster analysis (HCA), partial least squares discriminant analysis (PLS-DA), Fisher's exact test and random forest regression were used to test for correlations between individuals classified as either highly or poorly attractive to mosquitoes and their HLA profile and volatile composition. HLA profiling suggests that people carrying HLA gene Cw *07 are more attractive to mosquitoes. GC-MS revealed that limonene, 2-phenylethanol and 2-ethyl-1-hexanol were associated with individuals that were poorly attractive to An.gambiae and lactic acid, 2-methylbutanoic acid, tetradecanoic acid and octanal with individuals that were highly attractive. Such compounds offer potential for disruption of mosquito behavior in malaria intervention programs. CI - Copyright (c) 2013 Elsevier B.V. All rights reserved. FAU - Verhulst, Niels O AU - Verhulst NO AD - Laboratory of Entomology, Wageningen University and Research Centre, P.O. Box 8031, 6700 EH Wageningen, The Netherlands. Niels.Verhulst@wur.nl FAU - Beijleveld, Hans AU - Beijleveld H FAU - Qiu, Yu Tong AU - Qiu YT FAU - Maliepaard, Chris AU - Maliepaard C FAU - Verduyn, Willem AU - Verduyn W FAU - Haasnoot, Geert W AU - Haasnoot GW FAU - Claas, Frans H J AU - Claas FH FAU - Mumm, Roland AU - Mumm R FAU - Bouwmeester, Harro J AU - Bouwmeester HJ FAU - Takken, Willem AU - Takken W FAU - van Loon, Joop J A AU - van Loon JJ FAU - Smallegange, Renate C AU - Smallegange RC LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't DEP - 20130518 PL - Netherlands TA - Infect Genet Evol JT - Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases JID - 101084138 RN - 0 (HLA Antigens) RN - 0 (Volatile Organic Compounds) SB - IM MH - Adult MH - Animals MH - Anopheles/physiology MH - Discriminant Analysis MH - Female MH - Gas Chromatography-Mass Spectrometry MH - HLA Antigens/classification/*genetics MH - Humans MH - Least-Squares Analysis MH - Malaria/transmission MH - Male MH - Middle Aged MH - Odorants MH - Skin/*chemistry MH - Volatile Organic Compounds/*chemistry OTO - NOTNLM OT - Anopheles gambiae OT - GC-MS OT - Host odor OT - Major histocompatibility complex EDAT- 2013/05/22 06:00 MHDA- 2014/04/25 06:00 CRDT- 2013/05/22 06:00 PHST- 2013/02/28 00:00 [received] PHST- 2013/05/07 00:00 [revised] PHST- 2013/05/08 00:00 [accepted] PHST- 2013/05/22 06:00 [entrez] PHST- 2013/05/22 06:00 [pubmed] PHST- 2014/04/25 06:00 [medline] AID - S1567-1348(13)00198-6 [pii] AID - 10.1016/j.meegid.2013.05.009 [doi] PST - ppublish SO - Infect Genet Evol. 2013 Aug;18:87-93. doi: 10.1016/j.meegid.2013.05.009. Epub 2013 May 18.