PMID- 23727437 OWN - NLM STAT- MEDLINE DCOM- 20140729 LR - 20211021 IS - 1873-7064 (Electronic) IS - 0028-3908 (Print) IS - 0028-3908 (Linking) VI - 76 Pt B IP - 0 0 DP - 2014 Jan TI - Adaptations in AMPA receptor transmission in the nucleus accumbens contributing to incubation of cocaine craving. PG - 287-300 LID - S0028-3908(13)00233-5 [pii] LID - 10.1016/j.neuropharm.2013.04.061 [doi] AB - Cue-induced cocaine craving in rodents intensifies or "incubates" during the first months of withdrawal from long access cocaine self-administration. This incubation phenomenon is relevant to human users who achieve abstinence but exhibit persistent vulnerability to cue-induced relapse. It is well established that incubation of cocaine craving involves complex neuronal circuits. Here we will focus on neuroadaptations in the nucleus accumbens (NAc), a region of convergence for pathways that control cocaine seeking. A key adaptation is a delayed (~3-4 weeks) accumulation of Ca(2+)-permeable AMPAR receptors (CP-AMPARs) in synapses on medium spiny neurons (MSN) of the NAc. These CP-AMPARs mediate the expression of incubation after prolonged withdrawal, although different mechanisms must be responsible during the first weeks of withdrawal, prior to CP-AMPAR accumulation. The cascade of events leading to CP-AMPAR accumulation is still unclear. However, several candidate mechanisms have been identified. First, mGluR1 has been shown to negatively regulate CP-AMPAR levels in NAc synapses, and it is possible that a withdrawal-dependent decrease in this effect may help explain CP-AMPAR accumulation during incubation. Second, an increase in phosphorylation of GluA1 subunits (at the protein kinase A site) within extrasynaptic homomeric GluA1 receptors (CP-AMPARs) may promote their synaptic insertion and oppose their removal. Finally, elevation of brain-derived neurotrophic factor (BDNF) levels in the NAc may contribute to maintenance of incubation after months of withdrawal, although incubation-related increases in BDNF accumulation do not account for CP-AMPAR accumulation. Receptors and pathways that negatively regulate incubation, such as mGluR1, are promising targets for the development of therapeutic strategies to help recovering addicts maintain abstinence. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'. CI - Copyright (c) 2013 Elsevier Ltd. All rights reserved. FAU - Loweth, Jessica A AU - Loweth JA AD - Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA. FAU - Tseng, Kuei Y AU - Tseng KY FAU - Wolf, Marina E AU - Wolf ME LA - eng GR - R01 DA009621/DA/NIDA NIH HHS/United States GR - DA009621/DA/NIDA NIH HHS/United States GR - F32 DA030844/DA/NIDA NIH HHS/United States GR - DA0015835/DA/NIDA NIH HHS/United States GR - K05 DA029099/DA/NIDA NIH HHS/United States GR - R01 DA015835/DA/NIDA NIH HHS/United States GR - R37 DA015835/DA/NIDA NIH HHS/United States GR - DA029099/DA/NIDA NIH HHS/United States PT - Journal Article PT - Research Support, N.I.H., Extramural PT - Review DEP - 20130530 PL - England TA - Neuropharmacology JT - Neuropharmacology JID - 0236217 RN - 0 (Brain-Derived Neurotrophic Factor) RN - 0 (Receptors, AMPA) SB - IM MH - Adaptation, Physiological/*physiology MH - Animals MH - Brain-Derived Neurotrophic Factor/metabolism MH - Cocaine-Related Disorders/*physiopathology MH - Drug-Seeking Behavior/*physiology MH - Humans MH - Nucleus Accumbens/*metabolism MH - Receptors, AMPA/*metabolism PMC - PMC3836860 MID - NIHMS487257 OTO - NOTNLM OT - BDNF OT - Cocaine OT - Incubation OT - Metabotropic glutamate receptor OT - Nucleus accumbens OT - Protein kinase A EDAT- 2013/06/04 06:00 MHDA- 2014/07/30 06:00 PMCR- 2015/01/01 CRDT- 2013/06/04 06:00 PHST- 2013/02/25 00:00 [received] PHST- 2013/04/29 00:00 [revised] PHST- 2013/04/30 00:00 [accepted] PHST- 2013/06/04 06:00 [entrez] PHST- 2013/06/04 06:00 [pubmed] PHST- 2014/07/30 06:00 [medline] PHST- 2015/01/01 00:00 [pmc-release] AID - S0028-3908(13)00233-5 [pii] AID - 10.1016/j.neuropharm.2013.04.061 [doi] PST - ppublish SO - Neuropharmacology. 2014 Jan;76 Pt B(0 0):287-300. doi: 10.1016/j.neuropharm.2013.04.061. Epub 2013 May 30.