PMID- 23834360 OWN - NLM STAT- MEDLINE DCOM- 20140411 LR - 20130913 IS - 1748-1716 (Electronic) IS - 1748-1708 (Linking) VI - 209 IP - 2 DP - 2013 Oct TI - Changes in phosphorylated heat-shock protein 27 in response to acute ureteral obstruction in rats. PG - 167-78 LID - 10.1111/apha.12135 [doi] AB - AIM: In vivo, renal medullary interstitial cells (RMICs) and collecting duct principal cells (mpkCCD cells) are subjected to inflammatory, oxidative and mechanical stress as a result of unilateral ureteral obstruction (UUO). Because heat-shock protein (HSP) 27 and HSP70 are induced by cellular stresses and play a role in cytoprotection, we hypothesized that HSP27 and HSP70 are increased in rats subjected to acute UUO and in RMICs and mpkCCD cells exposed to inflammatory, oxidative or mechanical stress. METHODS: Rats were subjected to acute UUO for 6 h and 12 h. To examine the expression of HSP27, phosphorylated HSP27 (pHSP27) and HSP70 in response to inflammatory, oxidative and mechanical stress in vitro, we exposed RMICs and mpkCCD cells to interleukin 1beta (IL-1beta), hydrogen peroxide (H2 O2 ), and stretch stimulation over time. RESULTS: The phosphorylated form of HSP27 (pHSP27) was increased in the renal inner medulla (IM) after 6-h and 12-h UUO, while HSP27 and HSP70 were unchanged. Furthermore, after 6 h and 12 h of UUO, the expression of inflammatory (IL-1beta) and oxidative [haem oxygenase 1 (HO-1)] markers was induced. Exposure to inflammatory, oxidative and mechanical stress changed HSP27 and pHSP27 expression in RMICs but not in mpkCCD cells, while HSP70 was not affected by any of the stress conditions. Exposure of RMICs to oxidative and mechanical stress induced HSP27 phosphorylation via a p38-dependent mechanism. CONCLUSION: These data demonstrate that, in response to acute UUO, different forms of cellular stresses modulate HSP27 expression and phosphorylation in RMICs. This may affect the ability of renal cells to mount an effective cytoprotective response. CI - (c) 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd. FAU - Carlsen, I AU - Carlsen I AD - The Water and Salt Research Center, Aarhus University, Aarhus, Denmark; Institute of Clinical Medicine, Aarhus University Hospital-Skejby, Aarhus, Denmark. FAU - Nilsson, L AU - Nilsson L FAU - Frokiaer, J AU - Frokiaer J FAU - Norregaard, R AU - Norregaard R LA - eng PT - Journal Article DEP - 20130709 PL - England TA - Acta Physiol (Oxf) JT - Acta physiologica (Oxford, England) JID - 101262545 RN - 0 (HSP27 Heat-Shock Proteins) RN - 0 (HSP70 Heat-Shock Proteins) RN - 0 (Hspb1 protein, rat) SB - IM MH - Animals MH - HSP27 Heat-Shock Proteins/analysis/*biosynthesis MH - HSP70 Heat-Shock Proteins/analysis/biosynthesis MH - Immunoblotting MH - Immunohistochemistry MH - Kidney Medulla/*metabolism MH - Kidney Tubules, Collecting/*metabolism MH - Male MH - Oxidative Stress/physiology MH - Phosphorylation MH - Polymerase Chain Reaction MH - Rats MH - Rats, Wistar MH - Stress, Mechanical MH - Ureteral Obstruction/*metabolism OTO - NOTNLM OT - HSP27 OT - renal medullary interstitial cells OT - unilateral ureteral obstruction EDAT- 2013/07/10 06:00 MHDA- 2014/04/12 06:00 CRDT- 2013/07/10 06:00 PHST- 2012/07/13 00:00 [received] PHST- 2012/09/18 00:00 [revised] PHST- 2013/05/31 00:00 [revised] PHST- 2013/06/05 00:00 [accepted] PHST- 2013/07/10 06:00 [entrez] PHST- 2013/07/10 06:00 [pubmed] PHST- 2014/04/12 06:00 [medline] AID - 10.1111/apha.12135 [doi] PST - ppublish SO - Acta Physiol (Oxf). 2013 Oct;209(2):167-78. doi: 10.1111/apha.12135. Epub 2013 Jul 9.