PMID- 24166477 OWN - NLM STAT- MEDLINE DCOM- 20150226 LR - 20220317 IS - 1573-6814 (Electronic) IS - 1389-9333 (Linking) VI - 15 IP - 2 DP - 2014 Jun TI - In toto differentiation of human amniotic membrane towards the Schwann cell lineage. PG - 227-39 LID - 10.1007/s10561-013-9401-1 [doi] AB - Human amniotic membrane (hAM) is a tissue containing cells with proven stem cell properties. In its decellularized form it has been successfully applied as nerve conduit biomaterial to improve peripheral nerve regeneration in injury models. We hypothesize that viable hAM without prior cell isolation can be differentiated towards the Schwann cell lineage to generate a possible alternative to commonly applied tissue engineering materials for nerve regeneration. For in vitro Schwann cell differentiation, biopsies of hAM of 8 mm diameter were incubated with a sequential order of neuronal induction and growth factors for 21 days and characterized for cellular viability and the typical glial markers glial fibrillary acidic protein (GFAP), S100beta, p75 and neurotrophic tyrosine kinase receptor (NTRK) using immunohistology. The secretion of the neurotrophic factors brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF) was quantified by ELISA. The hAM maintained high viability, especially under differentiation conditions (90.2 % +/- 41.6 day 14; 80.0 % +/- 44.5 day 21 compared to day 0). Both, BDNF and GDNF secretion was up-regulated upon differentiation. The fresh membrane stained positive for GFAP and p75 and NTRK, which was strongly increased after culture in differentiation conditions. Especially the epithelial layer within the membrane exhibited a change in morphology upon differentiation forming a multi-layered epithelium with intense accumulations of the marker proteins. However, S100beta was expressed at equal levels and equal distribution in fresh and cultured hAM conditions. Viable hAM may be a promising alternative to present formulations used for peripheral nerve regeneration. FAU - Banerjee, Asmita AU - Banerjee A AD - Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstrasse 13, 1200, Vienna, Austria. FAU - Nurnberger, Sylvia AU - Nurnberger S FAU - Hennerbichler, Simone AU - Hennerbichler S FAU - Riedl, Sabrina AU - Riedl S FAU - Schuh, Christina M A P AU - Schuh CM FAU - Hacobian, Ara AU - Hacobian A FAU - Teuschl, Andreas AU - Teuschl A FAU - Eibl, Johann AU - Eibl J FAU - Redl, Heinz AU - Redl H FAU - Wolbank, Susanne AU - Wolbank S LA - eng PT - Journal Article DEP - 20131029 PL - Netherlands TA - Cell Tissue Bank JT - Cell and tissue banking JID - 100965121 SB - IM MH - Amnion/*cytology/metabolism MH - Cell Differentiation/*physiology MH - Cell Lineage/*physiology MH - *Cell Separation MH - Cells, Cultured MH - Humans MH - Regeneration/physiology MH - Schwann Cells/*cytology MH - Stem Cells/cytology EDAT- 2013/10/30 06:00 MHDA- 2015/02/27 06:00 CRDT- 2013/10/30 06:00 PHST- 2013/07/31 00:00 [received] PHST- 2013/10/01 00:00 [accepted] PHST- 2013/10/30 06:00 [entrez] PHST- 2013/10/30 06:00 [pubmed] PHST- 2015/02/27 06:00 [medline] AID - 10.1007/s10561-013-9401-1 [doi] PST - ppublish SO - Cell Tissue Bank. 2014 Jun;15(2):227-39. doi: 10.1007/s10561-013-9401-1. Epub 2013 Oct 29.