PMID- 24226028 OWN - NLM STAT- MEDLINE DCOM- 20140226 LR - 20211203 IS - 1522-1490 (Electronic) IS - 0363-6119 (Print) IS - 0363-6119 (Linking) VI - 306 IP - 1 DP - 2014 Jan 1 TI - Chronic alcohol consumption disrupts myocardial protein balance and function in aged, but not adult, female F344 rats. PG - R23-33 LID - 10.1152/ajpregu.00414.2013 [doi] AB - The purpose of this study was to assess whether the deleterious effect of chronic alcohol consumption differs in adult and aged female rats. To address this aim, adult (4 mo) and aged (18 mo) F344 rats were fed a nutritionally complete liquid diet containing alcohol (36% total calories) or an isocaloric isonitrogenous control diet for 20 wk. Cardiac structure and function, assessed by echocardiography, as well as myocardial protein synthesis and proteolysis did not differ in either alcohol- versus control-fed adult rats or in adult versus aged control-fed rats. In contrast, cardiac function was impaired in alcohol-fed aged rats compared with age-matched control rats. Additionally, alcohol feeding decreased cardiac protein synthesis that was associated with decreased phosphorylation of 4E-BP1 and S6K1. This reduction in mammalian target of rapamycin (mTOR) kinase activity was associated with reduced eIF3f and binding of both Raptor and eIF4G to eIF3. Proteasome activity was increased in alcohol-fed aged rats with a coordinate elevation in the E3 ligases atrogin-1 and muscle RING-finger protein-1 (MuRF1). These changes were associated with increased regulated in development and DNA damage response 1 (REDD1) and phosphorylation of AMP-activated protein kinase (AMPK) but no increase in AKT or forkhead transcription factor (FOXO)3 phosphorylation. Finally, markers of autophagy (e.g., LC3B, Atg7, Atg12) and TNF-alpha were increased to a greater extent in alcohol-fed aged rats. These data demonstrate that aged female rats exhibit an enhanced sensitivity to alcohol compared with adult animals. Our data are consistent with a model whereby alcohol increases proteolysis via FOXO-independent increase in atrogin-1, which degrades eIF3f and therefore impairs formation of a functional preinitiation complex and protein synthesis. FAU - Lang, Charles H AU - Lang CH AD - Department of Cellular and Molecular Physiology, and. FAU - Korzick, Donna H AU - Korzick DH LA - eng GR - R37 AA011290/AA/NIAAA NIH HHS/United States GR - AA019403/AA/NIAAA NIH HHS/United States GR - R01 HL-091097/HL/NHLBI NIH HHS/United States PT - Journal Article PT - Research Support, N.I.H., Extramural DEP - 20131113 PL - United States TA - Am J Physiol Regul Integr Comp Physiol JT - American journal of physiology. Regulatory, integrative and comparative physiology JID - 100901230 RN - 0 (Muscle Proteins) RN - 3K9958V90M (Ethanol) RN - EC 2.3.2.27 (Fbxo32 protein, rat) RN - EC 2.3.2.27 (SKP Cullin F-Box Protein Ligases) RN - EC 2.7.11.1 (TOR Serine-Threonine Kinases) SB - IM MH - *Aging MH - *Alcohol Drinking MH - Animals MH - Ethanol/*pharmacology MH - Female MH - Heart/*drug effects MH - Muscle Proteins/*metabolism MH - Muscle, Skeletal/metabolism MH - Myocardium/*metabolism MH - Phosphorylation/physiology MH - Rats MH - Rats, Inbred F344 MH - SKP Cullin F-Box Protein Ligases/metabolism MH - TOR Serine-Threonine Kinases/metabolism PMC - PMC3921304 OTO - NOTNLM OT - atrophy OT - eIF3 OT - heart OT - mTOR OT - protein degradation OT - protein synthesis EDAT- 2013/11/15 06:00 MHDA- 2014/02/27 06:00 PMCR- 2015/01/01 CRDT- 2013/11/15 06:00 PHST- 2013/11/15 06:00 [entrez] PHST- 2013/11/15 06:00 [pubmed] PHST- 2014/02/27 06:00 [medline] PHST- 2015/01/01 00:00 [pmc-release] AID - ajpregu.00414.2013 [pii] AID - R-00414-2013 [pii] AID - 10.1152/ajpregu.00414.2013 [doi] PST - ppublish SO - Am J Physiol Regul Integr Comp Physiol. 2014 Jan 1;306(1):R23-33. doi: 10.1152/ajpregu.00414.2013. Epub 2013 Nov 13.