PMID- 24293312 OWN - NLM STAT- MEDLINE DCOM- 20141029 LR - 20150721 IS - 1559-0291 (Electronic) IS - 0273-2289 (Linking) VI - 172 IP - 4 DP - 2014 Feb TI - Bioremediation of Cd by microbially induced calcite precipitation. PG - 1929-37 LID - 10.1007/s12010-013-0626-z [doi] AB - Contamination by Cd is a significant environmental problem. Therefore, we examined Cd removal from an environmental perspective. Ureolysis-driven calcium carbonate precipitation has been proposed for use in geotechnical engineering for soil remediation applications. In this study, 55 calcite-forming bacterial strains were newly isolated from various environments. Biomineralization of Cd by calcite-forming bacteria was investigated in laboratory-scale experiments. A simple method was developed to determine the effectiveness of microbially induced calcite precipitation (MICP). Using this method, we determined the effectiveness of biomineralization for retarding the flow of crystal violet through a 25-mL column. When the selected bacteria were analyzed using an inductively coupled plasma optical emission spectrometer, high removal rates (99.95 %) of Cd were observed following incubation for 48 h. Samples of solids that formed in the reaction vessels were examined using a scanning electron microscope. The CdCO3 compounds primarily showed a spherical shape. The results of this study demonstrate that MICP-based sequestration of soluble heavy metals via coprecipitation with calcite may be useful for toxic heavy metal bioremediation. FAU - Kang, Chang-Ho AU - Kang CH AD - Department of Biological Engineering, Inha University, Yonghyun-dong, 253 Nam-gu, Incheon, 402-751, South Korea. FAU - Han, Sang-Hyun AU - Han SH FAU - Shin, Yujin AU - Shin Y FAU - Oh, Soo Ji AU - Oh SJ FAU - So, Jae-Seong AU - So JS LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't DEP - 20131203 PL - United States TA - Appl Biochem Biotechnol JT - Applied biochemistry and biotechnology JID - 8208561 RN - 00BH33GNGH (Cadmium) RN - H0G9379FGK (Calcium Carbonate) SB - IM EIN - Appl Biochem Biotechnol. 2015 May;176(2):645. PMID: 25920330 MH - *Biodegradation, Environmental MH - Cadmium/*metabolism MH - Calcium Carbonate/*metabolism EDAT- 2013/12/03 06:00 MHDA- 2014/10/30 06:00 CRDT- 2013/12/03 06:00 PHST- 2013/07/18 00:00 [received] PHST- 2013/10/30 00:00 [accepted] PHST- 2013/12/03 06:00 [entrez] PHST- 2013/12/03 06:00 [pubmed] PHST- 2014/10/30 06:00 [medline] AID - 10.1007/s12010-013-0626-z [doi] PST - ppublish SO - Appl Biochem Biotechnol. 2014 Feb;172(4):1929-37. doi: 10.1007/s12010-013-0626-z. Epub 2013 Dec 3.