PMID- 24589419 OWN - NLM STAT- MEDLINE DCOM- 20140916 LR - 20211021 IS - 1742-2094 (Electronic) IS - 1742-2094 (Linking) VI - 11 DP - 2014 Mar 4 TI - Inflammatory cascades mediate synapse elimination in spinal cord compression. PG - 40 LID - 10.1186/1742-2094-11-40 [doi] AB - BACKGROUND: Cervical compressive myelopathy (CCM) is caused by chronic spinal cord compression due to spondylosis, a degenerative disc disease, and ossification of the ligaments. Tip-toe walking Yoshimura (twy) mice are reported to be an ideal animal model for CCM-related neuronal dysfunction, because they develop spontaneous spinal cord compression without any artificial manipulation. Previous histological studies showed that neurons are lost due to apoptosis in CCM, but the mechanism underlying this neurodegeneration was not fully elucidated. The purpose of this study was to investigate the pathophysiology of CCM by evaluating the global gene expression of the compressed spinal cord and comparing the transcriptome analysis with the physical and histological findings in twy mice. METHODS: Twenty-week-old twy mice were divided into two groups according to the magnetic resonance imaging (MRI) findings: a severe compression (S) group and a mild compression (M) group. The transcriptome was analyzed by microarray and RT-PCR. The cellular pathophysiology was examined by immunohistological analysis and immuno-electron microscopy. Motor function was assessed by Rotarod treadmill latency and stride-length tests. RESULTS: Severe cervical calcification caused spinal canal stenosis and low functional capacity in twy mice. The microarray analysis revealed 215 genes that showed significantly different expression levels between the S and the M groups. Pathway analysis revealed that genes expressed at higher levels in the S group were enriched for terms related to the regulation of inflammation in the compressed spinal cord. M1 macrophage-dominant inflammation was present in the S group, and cysteine-rich protein 61 (Cyr61), an inducer of M1 macrophages, was markedly upregulated in these spinal cords. Furthermore, C1q, which initiates the classical complement cascade, was more upregulated in the S group than in the M group. The confocal and electron microscopy observations indicated that classically activated microglia/macrophages had migrated to the compressed spinal cord and eliminated synaptic terminals. CONCLUSIONS: We revealed the detailed pathophysiology of the inflammatory response in an animal model of chronic spinal cord compression. Our findings suggest that complement-mediated synapse elimination is a central mechanism underlying the neurodegeneration in CCM. FAU - Takano, Morito AU - Takano M FAU - Kawabata, Soya AU - Kawabata S FAU - Komaki, Yuji AU - Komaki Y FAU - Shibata, Shinsuke AU - Shibata S FAU - Hikishima, Keigo AU - Hikishima K FAU - Toyama, Yoshiaki AU - Toyama Y FAU - Okano, Hideyuki AU - Okano H AD - Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan. hidokano@a2.keio.jp. FAU - Nakamura, Masaya AU - Nakamura M LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't DEP - 20140304 PL - England TA - J Neuroinflammation JT - Journal of neuroinflammation JID - 101222974 RN - 0 (CCN1 protein, mouse) RN - 0 (Cysteine-Rich Protein 61) RN - 80295-33-6 (Complement C1q) RN - EC 3.6.1.- (Pyrophosphatases) RN - EC 3.6.1.9 (nucleotide pyrophosphatase) SB - IM MH - Animals MH - Complement C1q/genetics/metabolism MH - Cysteine-Rich Protein 61/metabolism MH - Disease Models, Animal MH - Gene Expression Profiling MH - Gene Expression Regulation/genetics/*physiology MH - Inflammation/*genetics/*physiopathology MH - Macrophages/metabolism/pathology/ultrastructure MH - Magnetic Resonance Imaging MH - Mice MH - Mice, Mutant Strains MH - Movement Disorders/genetics/physiopathology MH - Mutation/genetics MH - Pyrophosphatases/genetics/metabolism MH - Severity of Illness Index MH - Signal Transduction/immunology MH - Spinal Cord/metabolism/*pathology/ultrastructure MH - *Spinal Cord Compression/immunology/pathology/physiopathology MH - Synapses/metabolism/*pathology/ultrastructure MH - Time Factors PMC - PMC3975877 EDAT- 2014/03/05 06:00 MHDA- 2014/09/17 06:00 PMCR- 2014/03/04 CRDT- 2014/03/05 06:00 PHST- 2014/01/05 00:00 [received] PHST- 2014/02/17 00:00 [accepted] PHST- 2014/03/05 06:00 [entrez] PHST- 2014/03/05 06:00 [pubmed] PHST- 2014/09/17 06:00 [medline] PHST- 2014/03/04 00:00 [pmc-release] AID - 1742-2094-11-40 [pii] AID - 10.1186/1742-2094-11-40 [doi] PST - epublish SO - J Neuroinflammation. 2014 Mar 4;11:40. doi: 10.1186/1742-2094-11-40.