PMID- 24737200 OWN - NLM STAT- MEDLINE DCOM- 20150619 LR - 20151119 IS - 1099-1263 (Electronic) IS - 0260-437X (Linking) VI - 34 IP - 11 DP - 2014 Nov TI - Serum enhanced cytokine responses of macrophages to silica and iron oxide particles and nanomaterials: a comparison of serum to lung lining fluid and albumin dispersions. PG - 1177-87 LID - 10.1002/jat.2998 [doi] AB - The potential hazard to humans exposed to nanomaterials such as silica and iron oxide was investigated using an in vitro macrophage cell culture system. Amorphous silica and iron oxide particles and nanomaterials (NMs) were dispersed in cell culture medium supplemented with either bovine serum albumin (BSA), lung lining fluid (LLF) or serum, in order to mimic the body fluids encountered during different routes of exposure in the body. End points investigated included macrophage viability and cytokine production. Silica NMs and particles (50 and 200 nm, respectively) were unmodified (plain) or aminated (NH2 ). Iron oxide NMs and particles, Fe3 O4 45 nm and Fe2 O3 280 nm were also used in this study. Silica particles and NMs induced a dose-dependent increase in cytotoxicity as measured by lactate dehydrogenase (LDH) release. Serum enhanced silica-induced interleukin (IL)-6, IL-10, IL-1beta and MCP-1 release, whereas albumin partially inhibited MCP-1 release. Aminated silica, 50 nm was more potent than the 200-nm particles at inducing monocyte chemoattractant protein-1 (MCP-1) production when dispersed in medium or LLF, suggesting a size specific effect for these particles and this cytokine. Iron oxide particles were relatively inert compared with the silica particles and NMs; however, serum and albumin did affect cytokine release in some treatments. In conclusion, the data suggests that serum, compared with medium, BSA and LLF is very potent at enhancing macrophage responses to silica and iron oxide particles and NMs. Size was only influential in LLF for a limited number of parameters, whereas surface chemistry was not of consequence in this in vitro macrophage system. CI - Copyright (c) 2014 John Wiley & Sons, Ltd. FAU - Brown, David M AU - Brown DM AD - School of Life sciences, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, UK. FAU - Johnston, Helinor AU - Johnston H FAU - Gubbins, Eva AU - Gubbins E FAU - Stone, Vicki AU - Stone V LA - eng PT - Comparative Study PT - Journal Article PT - Research Support, Non-U.S. Gov't DEP - 20140416 PL - England TA - J Appl Toxicol JT - Journal of applied toxicology : JAT JID - 8109495 RN - 0 (Albumins) RN - 0 (CCL2 protein, human) RN - 0 (Chemokine CCL2) RN - 0 (Cytokines) RN - 0 (Ferric Compounds) RN - 0 (Interleukin-1beta) RN - 0 (Interleukin-6) RN - 130068-27-8 (Interleukin-10) RN - 1K09F3G675 (ferric oxide) RN - 7631-86-9 (Silicon Dioxide) RN - EC 1.1.1.27 (L-Lactate Dehydrogenase) SB - IM MH - Albumins/*metabolism MH - Animals MH - Body Fluids/chemistry MH - Chemokine CCL2/blood MH - Cytokines/*blood MH - Dose-Response Relationship, Drug MH - Ferric Compounds/*toxicity MH - Humans MH - Interleukin-10/blood MH - Interleukin-1beta/blood MH - Interleukin-6/blood MH - L-Lactate Dehydrogenase/metabolism MH - Lung/*drug effects/metabolism MH - Macrophages/drug effects MH - Male MH - Nanostructures/chemistry/*toxicity MH - Particle Size MH - Rats MH - Rats, Sprague-Dawley MH - Silicon Dioxide/*toxicity OTO - NOTNLM OT - Cytokine OT - Dispersant OT - Iron oxide OT - J774 OT - Nanomaterials OT - Silica EDAT- 2014/04/17 06:00 MHDA- 2015/06/20 06:00 CRDT- 2014/04/17 06:00 PHST- 2013/11/27 00:00 [received] PHST- 2014/01/29 00:00 [revised] PHST- 2014/01/29 00:00 [accepted] PHST- 2014/04/17 06:00 [entrez] PHST- 2014/04/17 06:00 [pubmed] PHST- 2015/06/20 06:00 [medline] AID - 10.1002/jat.2998 [doi] PST - ppublish SO - J Appl Toxicol. 2014 Nov;34(11):1177-87. doi: 10.1002/jat.2998. Epub 2014 Apr 16.