PMID- 25082660 OWN - NLM STAT- MEDLINE DCOM- 20150914 LR - 20220410 IS - 1097-0290 (Electronic) IS - 0006-3592 (Linking) VI - 112 IP - 2 DP - 2015 Feb TI - Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. PG - 252-62 LID - 10.1002/bit.25349 [doi] AB - Lignin, one of the major components of lignocellulosic biomass, plays an inhibitory role on the enzymatic hydrolysis of cellulose. This work examines the role of lignin in pretreated hardwood, where extents of cellulose hydrolysis decrease, rather than increase with increasing severity of liquid hot water pretreatment. Hardwood pretreated with liquid hot water at severities ranging from log Ro = 8.25 to 12.51 resulted in 80-90% recovery of the initial lignin in the residual solids. The ratio of acid insoluble lignin (AIL) to acid soluble lignin (ASL) increased and the formation of spherical lignin droplets on the cell wall surface was observed as previously reported in the literature. When lignins were isolated from hardwoods pretreated at increasing severities and characterized based on glass transition temperature (Tg ), the Tg of isolated lignins was found to increase from 171 to 180 degrees C as the severity increased from log Ro = 10.44 to 12.51. The increase in Tg suggested that the condensation reactions of lignin molecules occurred during pretreatment and altered the lignin structure. The contribution of the changes in lignin properties to enzymatic hydrolysis were examined by carrying out Avicel hydrolysis in the presence of isolated lignins. Lignins derived from more severely pretreated hardwoods had higher Tg values and showed more pronounced inhibition of enzymatic hydrolysis. CI - (c) 2014 Wiley Periodicals, Inc. FAU - Ko, Ja Kyong AU - Ko JK AD - Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, Indiana, 47907-2022; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, 47907-2022. FAU - Kim, Youngmi AU - Kim Y FAU - Ximenes, Eduardo AU - Ximenes E FAU - Ladisch, Michael R AU - Ladisch MR LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't PT - Research Support, U.S. Gov't, Non-P.H.S. PT - Review DEP - 20141010 PL - United States TA - Biotechnol Bioeng JT - Biotechnology and bioengineering JID - 7502021 RN - 059QF0KO0R (Water) RN - 9004-34-6 (Cellulose) RN - 9005-53-2 (Lignin) SB - IM MH - Biomass MH - Cellulose/*chemistry MH - Glass MH - *Hot Temperature MH - Hydrolysis MH - Lignin/*chemistry MH - Water/*chemistry OTO - NOTNLM OT - AIL/ASL ratio OT - hardwood OT - lignin OT - lignin glass transition temperature OT - liquid hot water pretreatment OT - severity EDAT- 2014/08/02 06:00 MHDA- 2015/09/15 06:00 CRDT- 2014/08/02 06:00 PHST- 2014/04/24 00:00 [received] PHST- 2014/07/02 00:00 [revised] PHST- 2014/07/21 00:00 [accepted] PHST- 2014/08/02 06:00 [entrez] PHST- 2014/08/02 06:00 [pubmed] PHST- 2015/09/15 06:00 [medline] AID - 10.1002/bit.25349 [doi] PST - ppublish SO - Biotechnol Bioeng. 2015 Feb;112(2):252-62. doi: 10.1002/bit.25349. Epub 2014 Oct 10.