PMID- 25557667 OWN - NLM STAT- MEDLINE DCOM- 20150921 LR - 20240109 IS - 1879-0445 (Electronic) IS - 0960-9822 (Linking) VI - 25 IP - 2 DP - 2015 Jan 19 TI - ELF3-PIF4 interaction regulates plant growth independently of the Evening Complex. PG - 187-193 LID - S0960-9822(14)01418-3 [pii] LID - 10.1016/j.cub.2014.10.070 [doi] AB - The circadian clock plays a pivotal role in the control of Arabidopsis hypocotyl elongation by regulating rhythmic expression of the bHLH factors PHYTOCHROME INTERACTING FACTOR 4 and 5 (PIF4 and 5). Coincidence of increased PIF4/PIF5 transcript levels with the dark period allows nuclear accumulation of these factors, and in short days it phases maximal hypocotyl growth at dawn. During early night, PIF4 and PIF5 transcription is repressed by the Evening Complex (EC) proteins EARLY FLOWERING3 (ELF3), EARLY FLOWERING4 (ELF4), and LUX ARRHYTHMO (LUX). While ELF3 has an essential role in EC complex assembly, several lines of evidence indicate that this protein controls plant growth via other mechanisms that are presently unknown. Here, we show that the ELF3 and PIF4 proteins interact in an EC-independent manner, and that this interaction prevents PIF4 from activating its transcriptional targets. We also show that PIF4 overexpression leads to ELF3 protein destabilization, and that this effect is mediated indirectly by negative feedback regulation of photoactive PHYTOCHROME B (phyB). Physical interaction of the phyB photoreceptor with ELF3 has been reported, but its functional relevance remains poorly understood. Our findings establish that phyB is needed for ELF3 accumulation in the light, most likely by competing for CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)-mediated ubiquitination and the proteasomal degradation of ELF3. Our results explain the short hypocotyl phenotype of ELF3 overexpressors, despite their normal clock function, and provide a molecular framework for understanding how warm temperatures promote hypocotyl elongation and affect the endogenous clock. CI - Copyright (c) 2015 Elsevier Ltd. All rights reserved. FAU - Nieto, Cristina AU - Nieto C AD - Departamento Genetica Molecular de Plantas, Centro Nacional de Biotecnologia (CSIC), Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain. FAU - Lopez-Salmeron, Vadir AU - Lopez-Salmeron V AD - Departamento Genetica Molecular de Plantas, Centro Nacional de Biotecnologia (CSIC), Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain. FAU - Daviere, Jean-Michel AU - Daviere JM AD - Departamento Genetica Molecular de Plantas, Centro Nacional de Biotecnologia (CSIC), Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain. FAU - Prat, Salome AU - Prat S AD - Departamento Genetica Molecular de Plantas, Centro Nacional de Biotecnologia (CSIC), Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain. Electronic address: sprat@cnb.csic.es. LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't DEP - 20141231 PL - England TA - Curr Biol JT - Current biology : CB JID - 9107782 RN - 0 (Arabidopsis Proteins) RN - 0 (Basic Helix-Loop-Helix Transcription Factors) RN - 0 (ELF3 protein, Arabidopsis) RN - 0 (PIF4 protein, Arabidopsis) RN - 0 (Transcription Factors) RN - 136250-22-1 (Phytochrome B) SB - IM MH - Arabidopsis/*genetics/*growth & development MH - Arabidopsis Proteins/*genetics/metabolism MH - Basic Helix-Loop-Helix Transcription Factors/*genetics/metabolism MH - Circadian Clocks MH - Gene Expression Regulation, Plant MH - Light MH - Phytochrome B/metabolism MH - Polymerase Chain Reaction MH - Transcription Factors/*genetics/metabolism EDAT- 2015/01/06 06:00 MHDA- 2015/09/22 06:00 CRDT- 2015/01/06 06:00 PHST- 2014/08/25 00:00 [received] PHST- 2014/10/22 00:00 [revised] PHST- 2014/10/22 00:00 [accepted] PHST- 2015/01/06 06:00 [entrez] PHST- 2015/01/06 06:00 [pubmed] PHST- 2015/09/22 06:00 [medline] AID - S0960-9822(14)01418-3 [pii] AID - 10.1016/j.cub.2014.10.070 [doi] PST - ppublish SO - Curr Biol. 2015 Jan 19;25(2):187-193. doi: 10.1016/j.cub.2014.10.070. Epub 2014 Dec 31.